填空题(2001年上海市

某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种______种(结果用数值表示).

答案解析

7

讨论

设数列{an}是公比q>0的等比数列,Sn是它的前n项和,若Sn=7,则此数列的首项a1的取值范围是________.

抛物线x2 - 4y - 3=0的焦点坐标为________.

设集合A={x|2lg⁡x=lg⁡(8x-15),x∈R},B={x|cos(x/2)>0,x∈R},则A∩B的元素个数为______.

设P为双曲线x2/4 - y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是____________.

设数列{an}的通项为an=2n-7(n∈N),则|a1|+|a2|+⋯+|a15|=______.

设函数f(x)=,则满足f(x)=1/4的x值为______.

设0<θ<π/2,曲线x2sin⁡θ+y2cos⁡θ=1和x2cos⁡θ-y2sin⁡θ=1有4个不同的交点.(Ⅰ)求θ的取值范围;(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.

某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虛轴)旋转所成的曲面,其中A,A'是双曲线的顶点,C,C是冷却塔上口直径的两个端点,B,B'是下底直径的两个端点,已知AA'=14 m, CC'=18 m,BB'=22 m,塔高20 m.(Ⅰ)建立坐标系并写出该双曲线方程;(Ⅱ)求冷却塔的容积(精确到10m3 ,塔壁厚度不计,π取3.14).

如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox//BC,Oy//AB,E为VC中点,正四棱锥底面长为2a,高为h. (Ⅰ)求cos⁡⟨,⟩;(Ⅱ)记面BVC为α,面DVC为β,若∠BED是二面角α-VC-β的平面角,求∠BED.

设a>0,f(x)=ex/a+a/ex 是R上的偶函数.(Ⅰ)求a的值.(Ⅱ)证明f(x)在(0,+∞)上是增函数.

圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.

某赛季足球比赛的计分规则是:胜一场,的3分;平一场,得1分;负一场,得0分.一球对打完15场,积33分.若不考虑顺序,该队胜、负、平的情况共有【 】

以一个正方体的顶点为顶点的四面体共有【 】个

平面上,四条平行直线与另外五条平行直线互相垂直,则它们构成的矩形共有______个(结果用数值表示).

从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙电视机各1台,则不同的取法共有【 】种。

在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共________种(用数字作答)。

有一元票,二元票,十元票各三张,问可付出若干种不同款额?

某学校开设了4门体育类选修课和4门艺术类选修课, 学生需从这8门课中选修2门或3门课, 并且每类选修课至少选修1门, 则不同的选课方案共有 ______种(用数字作答).

某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有【 】种.

4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种