单项选择(1999年全国统考

若(2x+)= a0 + a1x + a2x2 + a3x3 + a4x4,则(a0 + a2 + a4 )2 - (a1 + a3 )2的值为【 】

A、1

B、-1

C、0

D、2

答案解析

A

讨论

若干毫升水倒人底面半径为2cm的圆柱形器皿中,量得水面的高度为6cm,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是【 】

在极坐标中,曲线ρ=4sin⁡(θ - π/3)关于【 】

若f(x)sin⁡x是周期为π的奇函数,则f(x)可以是【 】

函数f(x)=M sin⁡(ωx+φ) (ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=M cos⁡(ωx+φ)在[a,b]上【 】

若函数y=f(x)的反函数是y=g(x),f(a)=b,ab≠0,则g(b)等于【 】

已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元函数是|a|则集合B中元素的个数是【 】

如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是【 】

已知数列{bn }是等列数差,b1=1,b1+b2+⋯+b10=145.(Ⅰ)求数列{bn }的通项bn;(Ⅱ)设数列{an }的通项an=loga⁡(1+1/bn )(其中a>0,且a≠1,记Sn是数列{an }的前n项和.试比较Sn与1/3 logabn+1的大小,并证明你的结论.

设曲线C的方程是y=x3 - x,将C沿x轴,y轴正向分别平行移动t,s单位长度后得曲线C1.(Ⅰ)写出曲线C1的方程;(Ⅱ)证明曲线C与C1关于点A(t/2,s/2)对称;(Ⅲ)如果曲线C与C1有且仅有一个公共点,证明s=t3/4 - t且t≠0.

如图,已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(Ⅰ)求侧棱A1A与底面ABC所成角的大小;(Ⅱ)求侧面A1ABB1与底面ABC所成二面角的大小;(Ⅲ)求顶点C到侧面A1ABB1的距离.