4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种
己知单位向量 a, b 的夹角为 45°, ka − b 与 a 垂直, 则 k = ______.
已知 △ABC 是面积为(9)/4 的等边三角形, 且其顶点都在球 O 的球面上, 若球 O 的表面积为 16π, 则 O到平面 ABC 的距离为【 】
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】
某学校开设了4门体育类选修课和4门艺术类选修课, 学生需从这8门课中选修2门或3门课, 并且每类选修课至少选修1门, 则不同的选课方案共有 ______种(用数字作答).
四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有【 】
3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有【 】
已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有__________种可能(用数字作答).
将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有【 】
在区间[2022,4482]中,仅包含数字0,2,3,4,6,7(可重复)的四位整数的个数为__________.
某公司财务部有2名男员工3 名女员工,销售部有4 名男员1名女员工,现要从中选2名男员工、1名女员工组成工作小组,并要求每部门至少有1名员工入选,则工作小组的构成方式有【 】种。
由于疫情防控,电影院要求不同家庭之间至少隔一个座位,同一个家庭的成员要相连,两个家庭去看电影,一家3人,一家2人,现有一排7个相连的座位,符合要求的做法有【 】种
设 A 是一个三阶方阵,其元素为 1,2,…,9,且满足每行元素从左到右递增,每列元素从上到下递增,则满足条件的 A 有______个.
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有【 】
用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有【 】
四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有______种(用数字作答).
已知的展开式中x3的系数为9/4,常数a的值为________.
(x+2)10 (x2-1)的展开式中x10的系数是________.
若(2x+)4 = a0 + a1x + a2x2 + a3x3 + a4x4,则(a0 + a2 + a4 )2 - (a1 + a3 )2的值为【 】
在一块并排10垄的田地中,选择2垄分别种植A、B两种作物, 每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有________种(用数字作答).