填空题(2020年新高考Ⅱ·理

4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种

答案解析

36

讨论

己知单位向量 a, b 的夹角为 45°, ka − b 与 a 垂直, 则 k = ______.

0−1 周期序列在通信技术中有着重要应用. 序列 a1a2 · · · an · · · 满足 a1 ∈ {0, 1} (i = 1, 2, · · · ), 且存在正整 数 m, 使得 ai+m = ai (i = 1, 2, · · · ) 成立, 则称其为 0−1 周期数列, 并称满足 ai+m = ai (i = 1, 2, · · · ) 的最小正整数 m 为这个序列的周期. 对于周期为 m 的 0−1 序列 a1a2 · · · an · · · , C(k) =(k = 1, 2, · · · , m−1)是描述其性质的重要指标. 下列周期为 5 的 0 − 1 序列中, 满足 C(k) ⩽ 1/5(k = 1, 2, 3, 4) 的序列是【 】

若 2x − 2y < 3−x − 3−y, 则【 】

已知 △ABC 是面积为(9)/4 的等边三角形, 且其顶点都在球 O 的球面上, 若球 O 的表面积为 16π, 则 O到平面 ABC 的距离为【 】

设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】

数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】

若过点 (2, 1) 的圆与两坐标轴都相切, 则圆心到直线 2x − y − 3 = 0 的距离为【 】

北京天坛的圆丘坛为古代祭天的场所, 分上、中、下三层, 上层中心有一块圆形石板 (称为天心石) , 环绕天 心石砌 9 块扇面形石板构成第一环, 向外每环依次增加 9 块, 下一层的第一环比上一层的最后一环多 9 块, 向外每 环依次也增加 9 块, 已知每层环数相同, 且下层比中层多 729 块, 则三层共有扇形面形石板 (不含天心石)【 】

某学校开设了4门体育类选修课和4门艺术类选修课, 学生需从这8门课中选修2门或3门课, 并且每类选修课至少选修1门, 则不同的选课方案共有 ______种(用数字作答).

四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有【 】

3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有【 】

某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种______种(结果用数值表示).

已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有__________种可能(用数字作答).

将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有【 】

在区间[2022,4482]中,仅包含数字0,2,3,4,6,7(可重复)的四位整数的个数为__________.

某公司财务部有2名男员工3 名女员工,销售部有4 名男员1名女员工,现要从中选2名男员工、1名女员工组成工作小组,并要求每部门至少有1名员工入选,则工作小组的构成方式有【 】种。

由于疫情防控,电影院要求不同家庭之间至少隔一个座位,同一个家庭的成员要相连,两个家庭去看电影,一家3人,一家2人,现有一排7个相连的座位,符合要求的做法有【 】种

在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共________种(用数字作答)。

现有11位同学报名博物馆的志愿讲解活动,活动从上午9点开始到下午5点结束,每小时安排一场公益小讲堂,每场需要1位同学为参观的游客提供讲解服务.为避免同学们劳累,馆方在排班时不会让同一人连续讲解2场,并且第一场与最后一场需要两位不同的同学负责.则馆方共有________种排班方式.

Let n be a positive integer. Initially, a bishop is placed in each square of the top row of a 2n×2n chessboard; those bishops are numbered from 1 to 2n ,from left to right. A jump is a simultaneous move made by all bishops such that the following conditions are satisfied:each bishop moves diagonally, in a straight line, some number of squares, andat the end of the jump, the bishops all stand in different squares of the same row.Find the total number of permutations σ of the numbers 1,2,⋯,2n with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order σ(1),σ(2),⋯,σ(2n ), from left to right.【译】设n是正整数.最开始在一个2n×2n的方格棋盘上的第一行的每个小方格内均放置一枚“象”,这些“象”从左到右依次编号:1,2,⋯,2n.定义一次“跳跃”操作为同时移动所有的“象”并满足如下条件:每一枚“象”可沿对角线方向移动任意方格;在这次“跳跃”操作结束时,所有的“象”恰在同一行的不同方格.求满足下列条件的数1,2,⋯,2n的排列σ的总个数:存在一系列的“跳跃”操作,使得结束时所有的“象”都在棋盘的最后一行,并且从左到右编号依次为:σ(1),σ(2),⋯,σ(2n ).

设 A 是一个三阶方阵,其元素为 1,2,…,9,且满足每行元素从左到右递增,每列元素从上到下递增,则满足条件的 A 有______个.

同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有【 】

用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有【 】

四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有______种(用数字作答).

已知的展开式中x3的系数为9/4,常数a的值为________.

(x+2)10 (x2-1)的展开式中x10的系数是________.

若(2x+)4 = a0 + a1x + a2x2 + a3x3 + a4x4,则(a0 + a2 + a4 )2 - (a1 + a3 )2的值为【 】

在一块并排10垄的田地中,选择2垄分别种植A、B两种作物, 每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有________种(用数字作答).