从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙电视机各1台,则不同的取法共有【 】种。
A、140
B、84
C、70
D、35
如果圆锥曲线的极坐标方程为ρ=16/(5-3cosθ),那么它的焦点的极坐标为【 】
已知 {an} 是等比数列,且an > 0,a2a4 + 2a3a5 + a4a6 = 25,那么a3 + a5的值等于【 】
如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面射影O在△ABC内,那么O是△ABC的【 】。
函数y=sin(2x+5π/2)的图像的一条对称轴方程是【 】
如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有【 】对。
函数 y = cos4x - sin4x 的最小正周期是【 】
已知sinα=4/5,并且α是第二象限的角,那么tanα的值等于【 】
复平面上点A,B对应的复数分别为z1=2,z2=-3,点P对应的复数为z,(z-z1)/(z-z2 )的辐角主值为φ.当点P在以原点为圆心,1为半径的上半圆周(不包括两个端点)上运动时,求φ的最小值.
已知集合A和集合B各含有12个元素,A∩B含有4个元素,试求同时满足下面两个条件的集合C的个数:(Ⅰ) C ⊂ A∪B,且C中含有3个元素;(Ⅱ) C∩A≠∅(∅表示空集).
假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有【 】种.
由数字1,2,3,4,5组成的没有重复数字的五位数,其中小于50000的偶数共有【 】个
平面上,四条平行直线与另外五条平行直线互相垂直,则它们构成的矩形共有______个(结果用数值表示).
某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要, 软件至少买3片,磁盘至少买2盒,则不同的选购方式共有【 】
设一班有学生 40 人中有甲乙二生,今选四人为代表,问:(1).甲乙均被选共有几种方法?(2).甲乙均不被选共有几种方法?
一平面上有 10 点,除其中四点在一直线上外,其余各点无三点共线,问连接各点所成之直线共有若干条?
某学校开设了4门体育类选修课和4门艺术类选修课, 学生需从这8门课中选修2门或3门课, 并且每类选修课至少选修1门, 则不同的选课方案共有 ______种(用数字作答).
从集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件(1) Φ ,U都要选出(2) 对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有_____种不同的选法.