单项选择(1991年全国统考

已知 {an} 是等比数列,且an > 0,a2a4 + 2a3a5 + a4a6 = 25,那么a3 + a5的值等于【 】

A、5

B、10

C、15

D、20

答案解析

A

讨论

已知 {an} 是无穷数列. 给出两个性质:① 对于 {an} 中任意两项 ai, aj (i > j), 在 {an} 中都存在一项 am, 使得 =am;② 对于 {an} 中任意一项 an (n ⩾ 3), 在 {an} 中都存在两项 ak, al (k > l), 使得 an = .(I) 若 an = n (n = 1, 2, …), 判断数列 {an} 是否满足性质 ①, 说明理由;(II) 若 an = 2n−1 (n = 1, 2, · · · ), 判断数列 {an} 是否同时满足性质 ① 和性质 ②, 说明理由;(III) 若 {an} 是递增数列, 且同时满足性质 ① 和性质 ②, 证明: {an} 为等比数列.

已知数列{an}的首项a1=b(b≠0),它的前n项的和Sn=a1+a2+⋯+an (n≥1),并且S1,S2,⋯,Sn,⋯是一个等比数列,其公比为p(p≠0,且|p|<1).(Ⅰ) 证明:a2,a3,⋯,an,⋯(即{an}从第2项起)是一个等比数列.(Ⅱ) 设Wn=a1 S1+a2 S2+⋯+an Sn (n≥1),求Wn(用b,p表示).

已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】

已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】

在公比为正数的等比数列{an}中,a2+a4=30,a4+a6=15/2,则a1的值为【 】

有三数原成等比级数,其和为9/2.若第一数以2/3乘之,第二数以2/3乘之,第三数以16/27乘之,则成等差级数,问原三数各几何?

设数列{an}的前n项和为Sn.则a2,a3,a4,⋯为等比数列.(1) Sn+1>Sn,n=1,2,3,⋯(2) {Sn}是等比数列.

以三角形各边为直径作圆,试证任意两边上二圆公切线之长为第三边被内切圆切点所分两部分之比例中项.

记Sn为等比数列{an}的前n项和,若S4=-5,S6=21S2,则S8=【 】

我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物林质量的“环权”,已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{an},该数列的前3项成等差数列,后7项成等比数列,且a1=1,a5=12,a9=192,则a7=______;数列{an}所有项的和为________.

已知数列{an },{bn}的项数均为m(m>2),且an,bn∈{1,2,⋯,m},{an },{bn}的前n项和分别为An,Bn,并规定A0=B0=0.对于k∈{0,1,2,⋯,m},定义rk=max⁡{i|Bi≤Ai,i∈{0,1,2,⋯,m}},其中maxM表示数集M中最大的数.(1)若a1=2,a2=1,a3=3,b1=1,b2=3,b3=3,求r0,r1,r2,r3的值;(2)若a1≥b1,2rj≤rj+1+rj-1,j=1,2,⋯,m-1,求rn;(3)证明:存在p,q,s,t∈{0,1,2,⋯,m},满足p>q,s>t,使得Ap+Bt=Aq+Bs.

令S=m²n/(2m(n2m+m2n)),则[100S]=________.

给定整数k≥2.求所有无穷正整数数列a1,a2,⋯,使得存在多项式P(x)=xk+ck-1 xk-1+⋯+c1 x+c0其中c0,c1,⋯,ck-1是非负整数,满足P(an )=an+1 an+2⋯an+k对任意正整数n成立.

已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.

数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.

数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】

0−1 周期序列在通信技术中有着重要应用. 序列 a1a2 · · · an · · · 满足 a1 ∈ {0, 1} (i = 1, 2, · · · ), 且存在正整 数 m, 使得 ai+m = ai (i = 1, 2, · · · ) 成立, 则称其为 0−1 周期数列, 并称满足 ai+m = ai (i = 1, 2, · · · ) 的最小正整数 m 为这个序列的周期. 对于周期为 m 的 0−1 序列 a1a2 · · · an · · · , C(k) =(k = 1, 2, · · · , m−1)是描述其性质的重要指标. 下列周期为 5 的 0 − 1 序列中, 满足 C(k) ⩽ 1/5(k = 1, 2, 3, 4) 的序列是【 】

如图, 将钢琴上的 12 个键依次记为 a1, a2, · · · , a12, 设 1 ⩽ i ⩽ j ⩽ k ⩽ 12. 若 k − j = 3 且 j − i = 4, 则称 ai, aj, ak 为原位大三和弦; 若 k − j = 4 且 j − i = 3, 则称 ai, aj, ak 为原位小三和弦. 用这 12 个键可以构成的原 位大三和弦与原位小三和弦的个数之和为【 】

设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.

信息熵是信息论中的一个重要概念. 设随机变量 X 所有可能的取值为 1, 2, … , n, 且 P (X = i) = pi >0 (i = 1, 2, …, n), =1, 定义 X 的信息熵 H(X) = −log2 pi.【 】