单项选择(2022年全国乙·理

已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】

A、14

B、12

C、6

D、3

答案解析

D

【解析】

设等比数列{an}的公比为q,q≠0,

若q=1,则a2-a5=0,与题意矛盾,

所以q≠1,

,解得

所以a6=a1q5=3.

讨论

在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则【 】

执行下面的流程图,输出的n=【 】

设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】

已知向量a,b满足|a|=1,|b|=√3,|a-2b|=3,则a⋅b=【 】

嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{bn}:b1=1+ ,b2=1+,b3=1+,…,依此类推,其中αk∈N* (k=1,2,⋯).则【 】

已知z=1-2i,且z+az ̄+b=0,其中a,b为实数,则【 】

设全集U={1,2,3,4,5},集合M满足∁UM={1,3},则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

已知函数f(x)=x3-x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.(1)若x1=-1,求a;(2)求a的取值范围.

小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直. (1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).

设{an}是由正数组成的等比数列,Sn是其前n项和.(1)证明(lgSn+lgSn+2)/2<lgSn+1.(2)是否存在常数c>0,使得[lg(Sn-c)+lg⁡(Sn+2-c)]/2=lg(Sn+1-c)成立?并证明你的结论.

如图为一台冷轧机的示意图.冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出. (I)输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过r0.问冷轧机至少需要安装多少对轧辊?[一对轧辊减薄率= (输入该对的带钢厚度-从该对输出的带钢厚度) ÷输入该对的带钢厚度](Ⅱ)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600 mm.若第k对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,,在冷轧机输出的带钢上,疵点的间距为Lk.为了便于检修,请计算L1 、L2 、L3并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗).

已知数列{cn},其中cn=2n+3n,且数列{cn+1 - pcn}为等比数列,求常数p.

设{cn},{bn}是公比不相等的两个比数列,cn =an+bn.证明数列{cn}不是等比数列.

在等差数列{an}中,若a10=0,则有等式a1+a2+⋯+an=a1+a2+⋯+a19-n (n<19,n∈N)成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式____________成立.

设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=________.

设数列{an}是公比q>0的等比数列,Sn是它的前n项和,若Sn=7,则此数列的首项a1的取值范围是________.

记Sn为等比数列{an}的前n项和,若S2=4,S4=6,则S6=【 】

已知{an}为无穷等比数列,a1=3,an的各项和为9,bn=a2n,则数列{bn}的各项和为__________.

已知a,a∈R,ab>0,函数f(x)=ax2+bx(x∈R).若f(s-t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是【 】