单项选择(2022年全国乙·理

已知z=1-2i,且z+az ̄+b=0,其中a,b为实数,则【 】

A、a=1,b=-2

B、a=-1,b=2

C、a=1,b=2

D、a=-1,b=-2

答案解析

A

【解析】

∵z ̄=1+2i

∴z+az ̄+b=1-2i+a(1+2i)+b=(1+a+b)+(2a-2)i

由z+az ̄+b=0,得,即

讨论

设全集U={1,2,3,4,5},集合M满足∁UM={1,3},则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

已知函数f(x)=x3-x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.(1)若x1=-1,求a;(2)求a的取值范围.

小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直. (1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).

甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表: 准点班次数 未准点班次数A 240 20B 210 30(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:K2=n(ad-bc)2/((a+b)(c+d)(a+c)(b+d)),P(K2⩾k) 0.100 0.050 0.010k 2.706 3.841 6.635

记双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值_________.

设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.

已知向量a=(m,3),b=(1,m+1).若a⊥b,则m=__________.

已知9m=10,a=10m-11,b=8m-9,则【 】

已知椭圆C:x2/a2 +y2/b2 =1(a>b>0)的离心率为1/3,A1,A2分别为C的左、右顶点,B为C的上顶点.若(BA1)⋅(BA2)=-1,则C的方程为【 】