关注优题吧,注册平台账号.
设复数ω = cos(2π/5) + isin(2π/5),则ω + ω2 + ω3 + ω4 + ω5的值是________.
0
在△ABC中,已知cosA=-3/5,则sin(A/2)=______.
已知圆柱的轴截面是正方形,它的面积是4cm2,那么这个圆柱的体积是__________cm3 (结果中保留π).
过点(1,2)且与直线2x + y - 1 = 0平行的直线方程是__________.
函数y=arcsinx(x∈[-1,1])的反函数是__________.
函数y=/(x+2)的定义域是____________.
设N*表示正整数集,求所有的函数f:N* → N*,使得对任意正整数x,y,均有f(f(x)+y)整除x+f(y).
设P是一个凸多面体,满足以下两个性质:(i) P的每一个顶点恰属于 3 个不同的面;(ii) 对任意 k ≥3, P 中 k 边形面都恰有偶数个。有一只蚂蚁从某条棱的中点出发,沿棱爬行,走一条闭合路径 L ,经过 L 上每一点恰好一次,最终回到出发点。 L 将 P 的表面分为两部分,使得对任意的 k ≥3,两部分中 k 边形面的个数相等。求证:蚂蚁在爬行中向左转和向右转的次数相等。
锐角△ABC中,AB>AC,M为其外接圆⊙O的劣弧BC的中点,K为A的对径点,过O作OD∥AM交AB于D,交CA的延长线于E,直线BM交直线CK于P,直线CM交直线BK于Q. 求证:∠OPB+∠OEB=∠OQC+∠ODC.
已知正整数n,恰有36个不同的质数整除n,对k=1,2,3,4,5,记[(k-1)n/5,kn/5]中互质的整数个数为Cn,已知C1,C2,C3,C4,C5不完全相同.求证:(Ci - Cj)2 ≥236.
给定正整数m>1,求正整数n的最小值,使得对任意正整数a1,a2,…,an,b1,b2,…,bn,存在整数x1,x2,…,xn,满足以下两个条件:(1) ∃i∈{1,2,…,n}使得xi与m互质;(2) aixi = bixi ≡ 0(mod m).
若z=1+i.则|iz+3z ̄|=【 】
已知z=1-2i,且z+az ̄+b=0,其中a,b为实数,则【 】
若复数z满足i⋅z=3-4i,则|z|=【 】
已知z=1+i(其中i为虚单位),则2z ̅=________.
已知i是虚数单位,化简(11-3i)/(1+2i)的结果为________.
设z是虚部不为零的复数.若(2+3z+4z2)/(2-3z+4z2)是实数,则|z|2的值为__________.
在复数范围内,方程z ̅-z2=i(z ̅+z2)的解的个数为__________.
若ω为1之两立方虚根之一,试示=3
问ai=?(i=√(-1))
求1的三次根(实根和虚根),证:任一虚根的平方等于另一虚根,且((-1+i√3)/2)n+((-1-i√3)/2)n=-1,式中n为整数,唯不能为3的倍数.
(sinθ +icosθ)n = sinnθ +icosnθ.
已知z=(1-i)/(2+2i),则z-z ̅=【 】
在复平面内,复数z对应的点的坐标是(-1,√3),则z的共轭复数z ̅=【 】
已知复数列{zn}满足:z1=√3/2,zn+1=zn ̅(1+zni)(n=1,2,⋯)其中i为虚单位.求z2021的值.
若z/(z-1)=i+1,则z=【 】
若 z = 1 +i,则|z2 −2z| =【】
若 z = 1 + 2i+i3, 则|z| =【 】
设复数 z1, z2 满足 |z1| = |z2| = 2, z1 + z2 = + i , 则 |z1 − z2| =______.
新高考Ⅱ复数的运算
若(1 + i) = 1 − i, 则 z =【 】