问ai=?(i=√(-1))
设一三角形三边之长为方程式 x³ +px² + qx +r = 0 三根,式中 p,g,r 均为已知数,求此三角形之面积.
设一班有学生 40 人中有甲乙二生,今选四人为代表,问:(1).甲乙均被选共有几种方法?(2).甲乙均不被选共有几种方法?
设x,y,z为任意三个角,求证:sinxsin(y-z)cos(y+z-x)+sinysin(z-x)cos(z+x-y)+sinzsin(x-y)cos(x+y-z)=0
设x,y,z为任意三个角,求证:sinx+siny+sinz-sin(x+y+z)=4 sin(x+y)/2 sin(y+z)/2 sin(z+x)/2
设 ABC 为一直角三角形,A 为直角,A 之平分线与 BC 交于 D,与此三角形之外接圆交于 B.求证: △ABC 之面积 =1/2 AD×AE.
设z是不为0的复数,若(z ̅ )2+1/z2 的实部和虚部均为整数,则|z|的值可能是【 】
在复平面内, 复数 z 对应的点的坐标是 (1, 2), 则 i · z =【 】
已知 a ∈ R, 若 a − 1 + (a − 2)i (i 为虚数单位) 是实数, 则 a =【 】
已知 i 是虚数单位, 则复数 z = (1 + i)(2 − i) 的实部是______.
当实数t取什么值时,复数z=+i的辐角主值θ适合0≤θ≤π/4 ?
设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2.再设z1,z2在复平面内的对应点是Z1,Z2.求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.