设 ABC 为一直角三角形,A 为直角,A 之平分线与 BC 交于 D,与此三角形之外接圆交于 B.求证: △ABC 之面积 =1/2 AD×AE.
设 ABC 为一直角三角形,A 为直角,A 之平分线与 BC 交于 D,与此三角形之外接圆交于 B.求证: △ABC 之面积 =1/2 AD×AE.
暂无答案
证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.
以 n 角形之顶点为顶点,而不是 n 角形之边为边之三角形共有若干?
路旁有塔 CD,塔底 D 与路最近处为路上之 A 点.于路上 B 点测得塔顶 C之仰角为 α,又测得 BC 与路成角β .已知 AD =l,求塔高.
设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.
设ABCD为一平行四边形,AC为对角线,由B作任意直线各交AC、CD及AD于F、G及E,求证EF·FG=BF².
设有一三角形,其底为 7 cm,高为 5 cm,用圆规及尺作一正方形,其面积与此相等者.
AO 为圆之半径,过垂直于此之直径上一点 B,引任意弦 BP,从此弦之一端P 引切线 PC 与OB 之延线会于 C,证 CB =CP.