问答题(1977年 安徽省

从山顶D测得地面上同一方向的两点A和B的俯角分别是30°和45°,已知AB=40米,求山高(精确到0.1)

答案解析

暂无答案

讨论

在 △ABC 内作 AE 及 BD,假设 ∠CAE < ∠CBD,∠BAE < ∠ABD,求证 AE> BD.

△ABC 和△A'B'C'中,∠A >∠A’,则 BC >B'C'.

自 △ABC 的顶点 A 引 ∠B 的内外角平分线之垂线,则此两垂足与 AB,AC两边的中点共线.求证之.

设ABC是一个正三角形.点A1,B1,C1在三角形ABC的内部,且满足A1 B=A1 C,B1 A=B1 C,C1 A=C1 B及∠BA1 C+∠CB1A+∠AC1 B=480°.设直线BC1与CB1交于点A2,AC1与A1 C交于B2,AB1与A1 B交于C2.证明:若三角形A1 B1 C1的三边长度两两不等,则三角形AA1 A2,BB1 B2,CC1 C2的外接圆都经过两个公共点.

如图,∠ABC=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E.已知AD=8,BE=3,则DE=______.

叙述并证明勾股定理.

CD为直角三角形ABC中斜边AB上的高,已知△ADC,△CBD,△ABC的面积成等比数列,求∠B(用反三角函数表示).

锐角△ABC中,AB>AC,M为其外接圆⊙O的劣弧BC的中点,K为A的对径点,过O作OD∥AM交AB于D,交CA的延长线于E,直线BM交直线CK于P,直线CM交直线BK于Q. 求证:∠OPB+∠OEB=∠OQC+∠ODC.

魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=【 】

设D是锐角三角形ABC(AB>AC)内部一点,使得∠DAB=∠CAD.线段AC上的点E满足∠ADE=∠BCD,线段AB上的点F满足∠FDA=∠DBC,且直线AC上的点X满足CX=BX.设O1和O2分别为三角形ADC和三角形EXD的外心.证明:直线BC,EF和O1O2共点.

A,B,C 为三定点,求作一圆过 A,B,使从 C 到此圆的切线等于定长.

已知PA,PB,PC为过圆周上点P三弦,PT为圆之切线,设有一直线与PT平行,交PA,PB,PC于A',B',C'三点.求证:PA∙PA'=PB∙PB'=PC∙PC'.

两圆面积比等于它们的半径比.

设 △ABC 是一个圆的内接三角形,过 A 作切线交于 BC 的延长线于 D.证明 △ABD,△ACD 的外接圆直径的比等于 AD:CD.

自 △ABC 的顶点 A 至对边作垂线,自垂足 D 作 AB、AC 过之垂线,其垂足为 E、F,证明 B,E,F,C 共圆.

设n是一个正整数.日式三角是将1+2+…+n个圆排成正三角形的形状,使得对 i= 1,2,…,n,从上到下的第i行恰有个圆,且其中恰有一个被染为红色.在日式三角内,忍者路径是指一串由n个圆组成的序列,从最上面一行的圆开始,每次从当前圆连接到它下方相邻的两个圆之一,直至到达最下面一行的某个圆为止.下图为一个n=6的日式三角,其中画有一条包含两个红色圆的忍者路径.求最大的整数k(用n表示),使得在每个日式三角中都存在一条忍者路径,它包含至少k个红色圆.

如图所示,在△BC中,M是边AC的中点,D,E是△ABC的外接圆在点A处的切线上的两点,满足MD//AB,且A是线段DE的中点,过A,B,E三点的圆与边AC相交于另一点P,过A,D,P三点的圆与DM的延长线相交于点Q.证明:∠BCQ=∠BAC.

Let ABC be an acute-angled triangle with AB > AC. Let P be the intersection of the tangents to the circumcircle of ABC at B and C. The line through the midpoints of line segments PB and PC meets lines AB and AC at X and Y respectively.Prove that the quadrilateral AXPY is cyclic.【译】在锐角三角形ABC中,AB>AC,△ABC的外接圆在点B和点C处的切线交于点P.一条同时过PB和PC中点的直线与AB,AC分别交于点X,Y.求证:A,X,P,Y四点共圆.

给定整数n > 1 .在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司 A 和B,各运营 k 辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站) . A 公司的 k 辆缆车的k个起点互不相同, k 个终点也互不相同,并且起点较高的缆车,它的终点也较高. B 公司的缆车也满足相同的条件.我们称两个车站被某家公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数 k ,使得一定有两个车站被两家公司同时连接.(印度供题)

There are 4n pebbles of weights 1,2,3,…,4n. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles so that the following two conditions are both satisfied:● The total weights of both piles are the same.● Each pile contains two pebbles of each colour.有 4n 枚石子,重量分别为 1 , 2 , 3 , … , 4n .每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:可以把这些小石子分成两堆,且满足以下两个条件:● 两堆小石子的总重量相同;● 每堆中每种颜色的小石子各有两枚.(匈牙利供题)