关注优题吧,注册平台账号.
设有一三角形,其底为 7 cm,高为 5 cm,用圆规及尺作一正方形,其面积与此相等者.
暂无答案
设ABCD为一平行四边形,AC为对角线,由B作任意直线各交AC、CD及AD于F、G及E,求证EF·FG=BF².
如图,已知正方形ABCD的边CD上任意一点E.延长BC到F,使CF=CD.设BE与DF相交于G,求证:BG⊥DF.
已知ABCD,A'B'C'D'都是正方形(如图),而A'、B'、C'、D'分别把AB、BC、CD、DA分为m:n,设AB=1.(1)求A'B'C'D'的面积;(2)求证A'B'C'D'的面积不小于1/2.
联四边对边中点之两直线,必互为二等分,试证之.
于四边形之内,取一点不在两对角线之交点之上者,试证明从此点至各顶点之距离之和大于两对角线之和.
ABCD is a rectangle. and a straight line APQ cuts BC in P & DC extended in Q. Locate the point P so that the sum of the areas of the two triangles ABP&CPO may be a minimum.
PQRS为平面四边形,QR=1,∠PQR= ∠QRS= 70°,∠PQS=15°,∠PRS= 40°.若∠RPS=θ.PQ=α,PS=β,则4αβsinθ属于下列哪个区间【 】
试作一正方形,与一已知长方形之面积相等.
求作一四角形,与一已知四角形等角而外切于一定圆.
⊙O 的半径是 a,ABCD 是它的内接四边形,∠A =75°,∠B = 120°,AB = BC,求四边形各边长.
若三角形的两边不等,它的对不等边的两角也必不等,并且大角必对大边.
△ABC 之边 AC 之三等分点之中,设近于 A 之点为 D,而 BC 之中点为 E时,则 AE 为 BD 所二等分.
试证: 直角三角形之弦上正方形之面积,与其他两边之平方形面积之和相等.
证明 △ABC 中过 B,C 二顶点之二中线等长,则 △ABC 为等腰,并证明其逆定理.
证明:等腰三角形两腰上的高相等.
为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.
已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).
三角形二边之和大于其他一边.
试证三角形之三中线相会于一点.
直角三角形之斜边上所画之正三角形之面积,等于其余两边上所画之正三角形之面积之和.
两圆相外切 (tangent externally) 于 A,又有一外公切线 (common external tangent) 切两圆于 B 及 C,试证 ∠BAC 为直角(right angle).
已知三角形之三角及其面积,求作其圆.
Two straight roads intersect at an angle of 30°. If two automobiles start at the same time at the junction, one at the rate of 60 miles an hour and the other atthe rate of 40 miles an hour, how far apart will they be in 15 minutes?
一定点 D在 AB 及 AC 两直线间,求作过 D至 AB、AC 两线之直线,并 D为所作线之三等分点之一点,并证有二此等线.
试证圆内之等弦距圆心均等.又证圆内之两等弦相交割其所割相当之部分各相等.
n 多边形诸角之和=______.
何谓圆:___________________________.
过一已知点,作直线分已知等腰梯形为两等积形.
作直线垂直于一已知线,与已知圆相切.
设G为半径为R的圆,G1,G2,⋯,Gn为半径为r的圆,已知G1,G2,⋯,Gn均外切于G,对于i=1,2,⋯,n-1,Gi与Gi+1外切,且Gn与G1外切,则下列叙述正确的有【 】