关注优题吧,注册平台账号.
试证三角形之三中线相会于一点.
暂无答案
有甲、乙二列火车,甲列比乙列每点之速度多 15 里,如行36 里,则甲列比乙列先 12 分钟到,问甲、乙二列车之速度各几何.
武汉大学解方程
有甲、乙二书记,甲每写3页.乙能写4页,甲日写8点钟,10日之间已写 480页.问乙欲 15 日之力写完 720 页,每日须写几点钟.
作通过二定点,中心在一定直线上之圆.
三角形二边之和大于其他一边.
解1/(1+2x)-2/(2+3x)+3/(3+3x)-4/(4+4x)=0.
析a2b+ab2-a2c+ac2-2abc-b2c+bc2之因式.
梨 10个柿8个较梨8个柿 10个少 30文,而梨柿各一个共钱 55 文,问梨柿每个价若干.
求由1至于某数间之素数之法,并举例以说明之.
设A,B,C与a,b,c依次为一三角形之三角与三边,试证a/(b+c)=
CD为直角三角形ABC中斜边AB上的高,已知△ADC,△CBD,△ABC的面积成等比数列,求∠B(用反三角函数表示).
锐角△ABC中,AB>AC,M为其外接圆⊙O的劣弧BC的中点,K为A的对径点,过O作OD∥AM交AB于D,交CA的延长线于E,直线BM交直线CK于P,直线CM交直线BK于Q. 求证:∠OPB+∠OEB=∠OQC+∠ODC.
魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=【 】
设D是锐角三角形ABC(AB>AC)内部一点,使得∠DAB=∠CAD.线段AC上的点E满足∠ADE=∠BCD,线段AB上的点F满足∠FDA=∠DBC,且直线AC上的点X满足CX=BX.设O1和O2分别为三角形ADC和三角形EXD的外心.证明:直线BC,EF和O1O2共点.
三等边三角形顶角之外角,二等分线与底边平行.
由直角三角形之直角顶,作其对边之垂线,求证此垂线之平方等于其所分底线两段之积.
三角形各内角平分线必交于一点,试证之.
设已知三角形之底边、面积及其顶角,求作此形.
知一边一邻角及其余二边之和,求作三角形。
设一三角形之底边为 600 尺,其二底角一为 30°,一为 120°,试求其他二边及其高为若干尺。
如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为【 】
圆Γ的圆心为I.凸四边形ABCD满足:线段AB,BC,CD和DA都与Γ相切.设Ω是三角形AIC的外接圆. BA往A方向的延长线交Ω于点X,BC往C方向的延长线交Ω于点Z,AD往D方向的延长线交Ω于点Y,CD往D方向的延长线交Ω于点T.证明:AD+DT+TX+XA=CD+DY+YZ+ZC.
Let n be a positive integer. A“Northern European Square Matrix (NESM) is an n×n square containing all the integers from 1 to n²,so that there is exactly one number in each grid.The two different grids are neighbours if they share a common edge.A grid is called a "valley”if the integer in it in smaller than the integers in all the neighbours of the grid. An "uphill path”is a sequence containing one or more grids satisfying:(i)the frist grid of the sequence is a valley,(ii) each subsequent grid in the sequence is the neighbour of its previous grid,(iii) the integers in the girds of the sequence is incremented.Figure out the minimum possible value of the number of uphill paths in a NESM which should be represented by a function of n.译文:令n为一个正整数,一个“北欧方阵”是一个包含1至n²所有整数的n×n的方格表,使得每个方格中恰有一个数字。两个相异方格如果有公共边,称它们是相邻的。如果一个方格内的数字比所有相邻方格内的数字都小,称其为“山谷”。一条“上坡路径”是一个包含一或多个方格的序列,满足:(1)序列的第一个方格是山谷;(2)序列中随后的每个方格都和前一个方格相邻;(3)序列中方格所写的数字递增。试求一个北欧方阵中山坡路径的最小可能值,以n的函数表示之。
如图所示,四边形ABCD内接于圆,(AB) ̅=5,(AC) ̅=3√5,(AD) ̅=7,∠BAC=∠CAD,则圆的半径为【 】
在△ABC中,AB=1,AC=3,∠BAC=π/2,半径为r>0的圆与边AB,AC相切,且也内切于△ABC的外接圆,则r的值为__________.
设两弦于圆内相交,其两线分之积,彼此相等,试证明之.
圆内各等弦中点之轨迹为一同心圆周,试证之.
设由圆外一点作一切线一割线,证明此切线为割线及其圆外线分的比例中率.
设一圆之半径为 25 尺,其外切四边形之圆界为 400 尺,试求此四边形之面积。
有 Rt△ABC(C为直角),以A为圆心,斜边之长为直径作圆,割 AC 于点 D及 AB 于点 O, 自 D 引与 AO 正交之弦 DE,证 △ADE 与 △OCB 全等.