证明题(1946年北京大学1946年清华大学1946年南开大学

证明 △ABC 中过 B,C 二顶点之二中线等长,则 △ABC 为等腰,并证明其逆定理.

答案解析

暂无答案

讨论

Let n be a positive integer. A“Northern European Square Matrix (NESM) is an n×n square containing all the integers from 1 to n²,so that there is exactly one number in each grid.The two different grids are neighbours if they share a common edge.A grid is called a "valley”if the integer in it in smaller than the integers in all the neighbours of the grid. An "uphill path”is a sequence containing one or more grids satisfying:(i)the frist grid of the sequence is a valley,(ii) each subsequent grid in the sequence is the neighbour of its previous grid,(iii) the integers in the girds of the sequence is incremented.Figure out the minimum possible value of the number of uphill paths in a NESM which should be represented by a function of n.译文:令n为一个正整数,一个“北欧方阵”是一个包含1至n²所有整数的n×n的方格表,使得每个方格中恰有一个数字。两个相异方格如果有公共边,称它们是相邻的。如果一个方格内的数字比所有相邻方格内的数字都小,称其为“山谷”。一条“上坡路径”是一个包含一或多个方格的序列,满足:(1)序列的第一个方格是山谷;(2)序列中随后的每个方格都和前一个方格相邻;(3)序列中方格所写的数字递增。试求一个北欧方阵中山坡路径的最小可能值,以n的函数表示之。

设一三角形之底边为 600 尺,其二底角一为 30°,一为 120°,试求其他二边及其高为若干尺。

有 Rt△ABC(C为直角),以A为圆心,斜边之长为直径作圆,割 AC 于点 D及 AB 于点 O, 自 D 引与 AO 正交之弦 DE,证 △ADE 与 △OCB 全等.

三角形二边之和大于其他一边.

作通过二定点,中心在一定直线上之圆.

试证三角形之三中线相会于一点.

任意之外切四边形,相对两边之和等于其他相对两边之和,试证明之.

If two circles tangent at C and a common exterior tangent touches the circles in A and B, the angle ACB is a right angle.

Homologous sides of two similar polygons have the ratio of 5 to 9 , the sum of the areas is 212 sq. ft. Find the area of each figure.

内接于圆之平行四边形为矩形,其对角线通过圆心,试证明之.