求级数1/(1×3)+1/(3×5)+1/(5×7)+⋯ n项及无穷项之和.其第n项为1/(2n-1)(2n+1).
已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,且Sn=a1+a2+⋯+an,那么Sn 的值等于【 】
已知{an}是公差不为零的等差数列,如果Sn是{an}的前n项和,那么(nan)/Sn )等于______.
已知等差数列前三项为a,4,3a前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值,(Ⅱ)求 (1/S1 +1/S2 +⋯+1/Sn ).
极限(C22+C32+C42+⋯+Cn2)/(n(C21+C31+C41+⋯+Cn1))=【 】
求极限[1/(n2+1)+2/(n2+1)+3/(n2+1)+⋯2n/(n2+1)].
已知等比数列{an}的公比q>1,并且a1=b(b≠0),求(a1+a2+a3+⋯+an)/(a6+a7+a8+⋯+an ).
设等差数列{an}的前n项和为Sn.已知a3=12,S12>0,S13<0.(Ⅰ)求公差d的取值范围.(Ⅱ)指出S1,S2,…,S12中哪一个值最大,并说明理由.
已知等差数列{an}的公差d>0,首项an>0,Sn=1/(aiai+1),则Sn =________。
等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为【 】
设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是【 】
若Sn是数列{an }的前n项和.且Sn=n2,则{an }是【 】
记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2/Sn +1/bn =2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式.
Find the general term and the sum ofn terms of the series -3,-1,11,39,89,167.
Find the sum of the geometical series -2,,-1/3 to 6 terms.
已知数列{an}满足an+1=1/4 (an-6)³+6(n=1,2,3,⋯),则【 】
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.
设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.
将数列 {2n − 1} 与 {3n − 2} 的公共项从小到大排列得到数列 {an}, 则 {an} 的前 n 项和为 __________.