设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是【 】
A、1
B、2
C、4
D、6
过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是【 】
已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.
如图所示四面体A-BCD中,AB,BC,BD两两互相垂直,且AB=BC=2,E是AC的中点,异面直线AD与BE所成的角大小为arccos /10,求四面体A-BCD的体积.
已知椭圆C的焦点分别为F1(-2,0)和F2(2,0),长轴长为6,设直线y=x+2交椭圆C于A,B两点,求线段AB的中点坐标.
我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.
已知等差数列{an}的公差不为零,Sn为其前n项和,若S5=0,则Si (i=0,1,2,…,100)中不同的数值有________个。
等差数列{an}满足a2021=a20+a21=1,则a1的值为__________.
若(z-x)2-4(x-y)(y-z)=0,求证:x,y,z成等差数列.
设等差数列{an}的前n项和为Sn.已知a3=12,S12>0,S13<0.(Ⅰ)求公差d的取值范围.(Ⅱ)指出S1,S2,…,S12中哪一个值最大,并说明理由.
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】
设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.
将数列 {2n − 1} 与 {3n − 2} 的公共项从小到大排列得到数列 {an}, 则 {an} 的前 n 项和为 __________.
试问数列:lg100,lg(100sinπ/4),lg(100sin2π/4),⋯,lg(100sinn-1π/4),前多少项的和的值最大?并求出这大值(这里取lg2=0.301)