问答题(2000年上海市

已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数, i为虚数单位,且对于任意复数z,有w=z ̅0∙ z ̅ ,|w|=2|z|.

(I)试求m的值,并分别写出x'和y'用x,y表示的关系式.

(Ⅱ)将(x,y)作为点P的坐标, (x',y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.

当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程.

(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

答案解析

(I)由题设,|w|=|z ̅0∙z ̅ |=|z0 ||z|=2|z|,∴|z0 |=2,于是由1+m2=4且m>0,得m=,因此由x'+y' i==x+ y+( x-y)i,得关系式(Ⅱ)设点P(x,y)在直线y=x+1上,则其经过变换后的点Q(x',y')满足 消去x,得y'=(2-) x'-2+2,故点Q的轨迹方程为y=(2-)x-2+2.(Ⅲ)假设存在这样的直线,∵平行坐标轴的直线显示...

查看完整答案

讨论

某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图(左)的一条折线表示;西红柿的种植成本与上市时间的关系用图(右)的抛物线段表示.(I) 写出图(左)表示的市场售价与时间的函数关系式P=f(t);写出图(右)表示的种植成本与时间的函数关系式Q=g(t);(II) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)

函数y=log2 (2x-1)/(3-x)的定义域为__________.

已知函数f(x)=,则f(f(1/2))=________;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是_________.

已知函数f(x)的定义域为[0,+∞),且满足f(x)=f(1/(1+x)),记函数的值域为Af,若a>0,满足{y│y=f(x),x∈[0,a] }=Af,则实数a的取值范围为__________.

设函数f(x)=,若f(x0)>1,则x0的取值范围是【 】

定义函数f(x)代表|x|-2与x2-ax+3a-5中较小的数.若f(x)至少有3个零点,则a的取值范围为__________.

有甲、乙两人,甲所有银为乙之五倍,其后甲得30元,乙得80元,则甲所有为乙之二倍,问甲、乙原各有银几何?

由甲地至乙地,若每时行 32 丈,则比预定时间迟2小时可到,若每小时行 56 丈,则比预定时间早1小时可到,问依预定时间每时应行之速?

北京工业大学映射与函数

A motion picture film 120 feet long contains a certain number of individual pictures.If each picture were 0.1 of an inch shorter, the same film would contain 720 more pictures, how long is each picture?