填空题(2022年浙江省

已知函数f(x)=,则f(f(1/2))=________;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是_________.

答案解析

①. 37/28 ②. 3+√3由已知f(1/2)=-(1/2)2+2=7/4,f(7/4)=7/4+4/7-1=37/28,所以f[f(1/2)]=37/28,当x≤1时,由1≤f(x)≤3可得1≤-x2+2≤...

查看完整答案

讨论

某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图(左)的一条折线表示;西红柿的种植成本与上市时间的关系用图(右)的抛物线段表示.(I) 写出图(左)表示的市场售价与时间的函数关系式P=f(t);写出图(右)表示的种植成本与时间的函数关系式Q=g(t);(II) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)

设集合A和B都是坐标平面上的点集{(x,y)|x∈R,y∈R},映射f:A→B把集合A中的元素(x,y)映射成集合B中的元素(x+y,x-y),则在映射f下,象(2,1)的原象是【 】

函数y=log2 (2x-1)/(3-x)的定义域为__________.

从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投人将比上年减少1/5.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1/4.( I )设n年内(本年度为第一年)总投人为an万元,旅游业总收人为bn万元.写出an,bn的表达式.(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?

设函数f(x)=,则满足f(x)=1/4的x值为______.

用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量1/2,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上,设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).( I )试规定f(0)的值,并解释其实际意义.(Ⅱ)试根据假定写出函数f(x)应该满足的条件和具有的性质.(Ⅲ)设f(x)=1/(1+x2 ).现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.

函数f,g:R⟶R定义为f(x)=x²+5/12,g(x)=,区域{(x,y)∈R×R||x|≤3/4,0≤y≤min⁡[f(x),g(x)]}的面积为α,则9α的值为________.

已知集合A={1,2,3},映射f:A→A,且满足对任意x∈A,有f(f(x))≥x,且这样的f有________个.

设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是【 】

已知a∈R,函数f(x)=,若f[f(√6)]=3,则a=__________.

已知函数f(x)=cosαx-ln⁡(1-x²),若x=0是f(x)的极大值点,求α的取值范围.

在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据,我们规定所测量物理量的“最佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=____________.

甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本速度(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(Ⅰ)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶?

已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.

设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则【 】

下列函数中最小值为4的是【 】

若a>0,b>0,则1/a+a/b2 +b的最小值为__________.

已知a>0,函数f(x)=ax-xex.(1)求函数y=f(x)在点(0,f(0))处的切点的方程;(2)证明函数f(x)存在唯一极值点;(3)若存在a,使得f(x)≤a+b对任意的x∈R成立,求实数b的取值范围.

某生产队要建立一个形状是直角梯形的苗圃,其两邻边借用夹角为135°的两面墙,另外两边是总长为30米的篱笆(如图,AD和DC为墙),问篱笆的两边各多长时,苗圃的面积最大?最大面积是多少?

某工厂科研小组,对一项生产工艺过程总结出产量指标函数和消耗指标函数分别为:f1 (x)=ax2+1/2 x+C和f2 (x)=ax2+bx+5/4,且知f1 (-1)=f2 (-1)=f1 (3)=f2 (3)=2.(1)分别求出产量指标函数f1 (x)和消耗指标函数f2 (x)的具体表达式;(2)问因素x取何值时,f1 (x)和f2 (x)有最大值或最小值,最大值或最小值各是多少?(3)画出所求出的函数的略图.