函数y=-1/(x+1)的图像是【 】
A、
B、
C、
D、
如图,已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.
如图,已知A1B1C1-ABC是正三棱柱,D是AC的中点.(Ⅰ)证明AB1//平面DBC1;(Ⅱ)假设AB1⊥BC1,求以BC1为棱、DBC1与CBC1为面的二面角α的度数.
已知函数f(x)=tanx,x∈(0,π/2).若x1,x2∈(0,π/2),且x1≠x2,证明1/2 [f(x1)+f(x2)]>f((x1+x2)/2).
已知z=1+i.(Ⅰ)设ω=z2+3z ̅-4,求ω的三角形式;(Ⅱ)如果=1-i,求实数a,b的值.
设圆锥底面圆周上两点A,B间的距离为2,圆锥顶点到直线AB的距离为,AB和圆锥的轴的距离为1,则该圆锥的体积为________.
已知sinθ + cosθ = 1/5,θ∈(0,π),则cotθ的值是________.
抛物线y2 = 8 - 4x的准线方程是________,圆心在该抛物线的顶点且与其准线相切的圆的方程是____________.
鸡蛋每个 80 元,鹅蛋每个 90 元,鸭蛋每个 70 元,用 9700 元买三种蛋共 120个,求各种蛋的个数.
解下列联立方程式x² - 4y² +x + 3y = 2x -y = 1
若x1,x2为方程式2x2-5x+3=0之二根,试求以x1/x2 与x2/x1 为根之方程式.
若a,b,c为方程式x³+px²+qx+r=0之根,试求以a-1/bc,b-1/ca,c-1/ab为根之方程式.
设一三角形三边之长为方程式 x³ +px² + qx +r = 0 三根,式中 p,g,r 均为已知数,求此三角形之面积.
若方程式ax³+3bx²+3cx+d=0有二相等之根,则其系数间之关系为(bc-ad)²=4(ac-b²)(bd-c²)试证之.