问答题(1994年全国统考

如图,已知A1B1C1-ABC是正三棱柱,D是AC的中点.

(Ⅰ)证明AB1//平面DBC1;

(Ⅱ)假设AB1⊥BC1,求以BC1为棱、DBC1与CBC1为面的二面角α的度数.

答案解析

(I)证明: ∵A1B1C1-ABC是正三棱柱,∴四边形B1BCC1是矩形.连接B1C交BC1于E,则B1E=EC连接DE.在△AB1C中,∵AD=DC,∴DE//AB1.又AB1⊄平面DBC1,DE ⊂平面DBC1,∴AB1//平面DBC1.(Ⅱ)解:作DF⊥BC,垂足为F,则DF⊥面B1BCC1,连接EF,则EF是ED在平面B1BCC1上的射影.AB1⊥BC1,由(I)知AB1//DE,∴DE⊥BC1,则BC1⊥EF...

查看完整答案

讨论

如图,已知:在直三棱柱ABC-A1B1C1中,∠ACB = 90°,∠BAC=30°,BC=1,AA1= ,M是 CC1 的中点.求证AB1⊥A1M.

如图,A1B1C1-ABC是直三棱柱,过点A1,B,C1的平面和平面ABC的交线记作l.(I)判定直线A1C1和l的位置关系,并加以证明;(Ⅱ)若A1A=1,AB=4,BC=3,∠ABC=90°,求顶点A1到直线l的距离.

已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是【 】

如图, 六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的. 已知螺帽的底面正六边形边长为 2cm, 高 为 2cm, 内孔半径为 0.5cm, 则此六角螺帽毛坯的体积是 __________cm3.

如图,三棱柱ABC-A1B1C1中,若E,F分别为AB,AC的中点,平面EB1C1F将三棱柱分成体积为V1,V2的两部分,那么V1:V2=__________.

在体积为V的斜三棱柱ABC-A'B'C'中,已知S是侧棱CC'上的一点,过点S,A,B的截面截得的三棱锥的体积为V1,那么过点S,A',B'的截面截得的三棱锥的体积为______.

如图,在直四棱柱A1B1C1D1-ABCD中,当底面四边形ABCD满足条件____________时,有A1C⊥B1D1)(注:填上你认为正确的一-种条件即可,不必考虑所有可能的情形).

在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为【 】

已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,DD为棱A1B1上的点, BF⊥A1B1. (1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?

一个正三棱柱形的零件,它的高是10cm,底面边长是2cm,求它的体积.

在半径为30m的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆锥形,且其轴截面顶角为120°。若要光源恰好照亮整个广场,则其高度应为________(精确到0.1m)。

建造一个容积为8m3,深为2m的长方体无盖水池。如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元。

已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为【 】

如图,四边形ABCD为正方形, ED⊥平面ABCD,FB//ED,AB=ED=2FB,记三棱锥E-ACD,F-ABC,F-ACE的体积分别为V1,V2,V3,则【 】

The base of a right circular cone has a diameter of 25 feet and its slant height is 40 feet. The surface of the cone is cut along a straight line from its vertex to a point on the base, and the surface is then spread out flat to form a sector of a circle. Find the angle of its sector in degrees.

已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,AP=2,点C在底面圆周上,且二面角P-AC-O为45°,则【 】

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, △ABC 是底面的内接正三角形, P 为 DO 上一点, ∠APC = 90°.(1) 证明: 平面 PAB ⊥ 平面 PAC;(2) 设 DO = , 圆锥的侧面积为π, 求三棱锥 P − ABC 的体积.

如图为某几何体的三视图, 则该几何体的表面积是【 】

已知圆锥的底面半径为 1, 母线长为 3, 则该圆锥内半径最大的球的体积为______.

某三棱柱的底面为正三角形, 其三视图如图所示, 该三棱柱的表面积为【 】