如图,已知:在直三棱柱ABC-A1B1C1中,∠ACB = 90°,∠BAC=30°,BC=1,AA1= ,M是 CC1 的中点.求证AB1⊥A1M.
已知 α,β为锐角,cosα=4/5,tan(α-β)=-1/3. 求cos β的值.
设函数f(x)=x2 + x + 1/2的定义域是[n,n+1]( n是自然数),那么f(x)的值域中共有______个整数.
在体积为V的斜三棱柱ABC-A'B'C'中,已知S是侧棱CC'上的一点,过点S,A,B的截面截得的三棱锥的体积为V1,那么过点S,A',B'的截面截得的三棱锥的体积为______.
已知圆台的上、下底面半径分别为r,2r,侧面积等于上、下底面积之和,则圆台的高为_______.
设复数z1 = 2 - i,z2 = 1 - 3i,则复数i/z1 + z2/5的虚部等于______.
椭圆9x2 + 16y2 = 144的离心率为______.
曲线2y2 + 3x + 3 = 0与曲线x2 + y2 - 4x - 5 = 0 的公共点的个数是【 】
体积相等的正方体、球、等边圆柱(即底面直径与母线 相等的圆柱)的全面积分别为S1,S2,S3,那么它们的 大小关系为【 】
在球面上有四个点P,A,B,C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a.那么这个球面的面积是________.
已知正三棱台上底面边长为2,下底面边长为4,且侧棱与底面所成的角是45°,那么这个正三棱台的体积等于__________.
如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面射影O在△ABC内,那么O是△ABC的【 】。
如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有【 】对。
设过长方体同一个顶点的三个面的对角线长分别是a,b,c,那么这个长方体的对角线长是【 】
已知圆锥的中截面周长为a,母线长为l,则它的侧面积等于______.
已知圆柱的轴截面是正方形,它的面积是4cm2,那么这个圆柱的体积是__________cm3 (结果中保留π).
如图,三棱柱ABC-A1B1C1中,若E,F分别为AB,AC的中点,平面EB1C1F将三棱柱分成体积为V1,V2的两部分,那么V1:V2=__________.
根据函数单调性的定义,证明函数f(x)=-x3 + 1在(-∞,+∞)是减函数.
证明:tan 3x/2 - tan x/2=2sinx/(cosx+cos2x) .
给定实数a,a≠0,a≠1,设函数y=(x-1)/(ax-1)(x∈R,x≠1/a).证明:(Ⅰ)经过这个函数图像上任意两个不同的点的直线不平行于x轴;(Ⅱ)这个函数的图像关于直线y=x成轴对称图形.
设a>0,a≠1,t>0,比较1/2logat与loga (t+1)/2的大小,并证明你的结论.
设复数z1和z2满足关系式=0,其中A为不等于0的复数.证明:(1)| z1+A||z2+A|=|A|2;(2) =||.
如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.
已知x1>0,x≠1,且xn+1=,(n=1,2,⋯).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.