如图,已知:在直三棱柱ABC-A1B1C1中,∠ACB = 90°,∠BAC=30°,BC=1,AA1= ,M是 CC1 的中点.求证AB1⊥A1M.
已知 α,β为锐角,cosα=4/5,tan(α-β)=-1/3. 求cos β的值.
设函数f(x)=x2 + x + 1/2的定义域是[n,n+1]( n是自然数),那么f(x)的值域中共有______个整数.
在体积为V的斜三棱柱ABC-A'B'C'中,已知S是侧棱CC'上的一点,过点S,A,B的截面截得的三棱锥的体积为V1,那么过点S,A',B'的截面截得的三棱锥的体积为______.
已知圆台的上、下底面半径分别为r,2r,侧面积等于上、下底面积之和,则圆台的高为_______.
设复数z1 = 2 - i,z2 = 1 - 3i,则复数i/z1 + z2/5的虚部等于______.
椭圆9x2 + 16y2 = 144的离心率为______.
曲线2y2 + 3x + 3 = 0与曲线x2 + y2 - 4x - 5 = 0 的公共点的个数是【 】
体积相等的正方体、球、等边圆柱(即底面直径与母线 相等的圆柱)的全面积分别为S1,S2,S3,那么它们的 大小关系为【 】
已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是【 】
如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为【 】
如图, 六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的. 已知螺帽的底面正六边形边长为 2cm, 高 为 2cm, 内孔半径为 0.5cm, 则此六角螺帽毛坯的体积是 __________cm3.
如图,三棱柱ABC-A1B1C1中,若E,F分别为AB,AC的中点,平面EB1C1F将三棱柱分成体积为V1,V2的两部分,那么V1:V2=__________.
如图,在直四棱柱A1B1C1D1-ABCD中,当底面四边形ABCD满足条件____________时,有A1C⊥B1D1)(注:填上你认为正确的一-种条件即可,不必考虑所有可能的情形).
在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为【 】
如图,A1B1C1-ABC是直三棱柱,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC,则BD1与AF1所成的角的余弦值是【 】
一个正三棱柱形的零件,它的高是10cm,底面边长是2cm,求它的体积.
如图,已知A1B1C1-ABC是正三棱柱,D是AC的中点.(Ⅰ)证明AB1//平面DBC1;(Ⅱ)假设AB1⊥BC1,求以BC1为棱、DBC1与CBC1为面的二面角α的度数.
某三棱柱的底面为正三角形, 其三视图如图所示, 该三棱柱的表面积为【 】
某几何体的三视图 (单位: cm) 如图所示, 则该几何体的体积 (单位: cm3) 是【 】
如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】
如下图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB, 将剩余部分沿OC,OD折叠,使OA,OB重合,则A(B),C,DCO为顶点的四面体的体积是_______.
一个正三棱台的下底和上底的周长分别为30cm和12cm,且侧面积等于两底面积之差,求斜高.
如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.
如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.