体积相等的正方体、球、等边圆柱(即底面直径与母线 相等的圆柱)的全面积分别为S1,S2,S3,那么它们的 大小关系为【 】
A、S123
B、S132
C、S231
D、S213
体积相等的正方体、球、等边圆柱(即底面直径与母线 相等的圆柱)的全面积分别为S1,S2,S3,那么它们的 大小关系为【 】
A、S123
B、S132
C、S231
D、S213
C
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
球面上有3个点,其中任意两点的球面距离都等于大圆周长的1/6,经过这3个点的小圆的周长为4π,那么这个球的半径为【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC = AC = OO1,则球 O 的表面积为【 】
已知 △ABC 是面积为(9)/4 的等边三角形, 且其顶点都在球 O 的球面上, 若球 O 的表面积为 16π, 则 O到平面 ABC 的距离为【 】
已知直四棱柱 ABCD − A1B1C1D1 的棱长均为 2, ∠BAD = 60◦. 以 D1 为球心, 为半径的球面与侧面 BCC1B1 的交线长为__________.
若棱长为 2 的正方体的顶点都在同一球面上, 则该球的表面积为【 】
已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是【 】
在球面上有四个点P,A,B,C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a.那么这个球面的面积是________.
如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于【 】
已知圆柱的轴截面是正方形,它的面积是4cm2,那么这个圆柱的体积是__________cm3 (结果中保留π).
已知正方形的边长为 a ,求侧面积等于这个正方形的面积、高等于这个正方形边长的直圆柱体的体积
一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是【 】
已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一第直径,C是下底面圆周上的一个动点,则ABC的面积取值范围为__________.
已知圆柱的高为4,底面积为9π,圆柱的侧面积为________.
如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,AF⊥DE,F是垂足.(1)求证:AF⊥DB;2)如果圆柱与三棱锥D-ABE的体积比等于3πr,求直线DE与平面ABCD所成的角.
下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】
如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】
如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.
由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.
如图,从一个棱长为6米的正方体中裁去两个相同的正三棱锥,若正三棱锥的边长AB为4√2,则剩余何体的表面积为【 】