证明题(1962年全国统考

由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.

答案解析

设正方体的棱长为1,连接AC,则AC=√2,∵AE为直角△A1AC的斜边A1C上的高,∴A1E∙A1C=AA12,EC∙A1C=AC2,两式相除,得(A1E)/EC=(AA12)/(AC2 )=1/(...

查看完整答案

讨论

如图,在正方体ABCD-A1B1C1D1中E,F分别是BB1,CD的中点. (Ⅰ)证明AD⊥D1F;(Ⅱ)求AE与D1F所成的角;(Ⅲ)证明面AED⊥面A1FD1;(Ⅳ)设AA1=2,求三棱锥F-A1ED1的体积VF-A1ED1.

在棱长为 10 的正方体 ABCD − A1B1C1D1 中, P 为左侧面 ADD1A1 上一点, 已知点 P 到 A1D1 的距离为 3, 点 P 到 AA1 的距离为 2, 则过点 P 且与 A1C 平行的直线交正方体于 P、 Q 两点, 则 Q 点所在的平面是【 】

如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】

如图已知正方体ABCD-A1 B1 C1 D1,M,N分别是A1 D,D1 B的中点,则【 】

如图,正方体ABCD-A1B1C1D1中,P,Q,R,S分别为棱AB,BC,BB1,CD的中点,连接A1S,B1D.空间任意两点M,N,若线段MN上不存在点在A1S,B1D上,则称MN两点可视,则下列选项中与点D1可视的点为【 】

下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】

在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则【 】

如图,从一个棱长为6米的正方体中裁去两个相同的正三棱锥,若正三棱锥的边长AB为4√2,则剩余何体的表面积为【 】

在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则【 】

如图,正方体ABCD-EFGH的棱长为2,在正方形ABEF的内切圆上任取一点P1,在正方形BCGF的内切圆上任取一点P2,在正方形EFGH的内切圆上任取一点P3,求|P1 P2 |+|P2 P3 |+|P3 P1 |的最小值与最大值.