单项选择(2022年全国甲·理2022年全国甲·文

在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则【 】

A、AB=2AD

B、AB与平面AB1C1D所成的角为30°

C、AC=CB1

D、B1D与平面BB1C1C所成的角为45°

答案解析

D不妨设AB=a,AD=b,AA1=c,依题以及长方体的结构特征可知,B1D与平面ABCD所成角为∠B1DB,B1D与平面AA1B1B所成角为∠DB1A,所以sin⁡30°=c/(B1D)=b/(B1D),即b=c,B1D=2c=,解得a=√2c.对于A,AB=a,AD=b,AB=√2AD,A错误;对于B,过B作BE⊥AB1于E,易知BE⊥平面AB1C1D...

查看完整答案

讨论

当x=1时,函数f(x)=a ln⁡x+b/x取得最大值-2,则f'(2)=【 】

函数y=(3x-3-x) cos⁡x在区间[-π/2,π/2]的图像大致为【 】

如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为【 】

设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x∣x2-4x+3=0},则∁U(A∪B)=【 】

从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为【 】

某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则【 】

若z=-1+√3 i,则z/(zz ̄-1)=【 】

记△ABC的三个内角分别为A,B,C,其对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3,已知S1-S2+S3=√3/2,sin⁡B=1/3.(1)求△ABC的面积;(2)若sin⁡A sin⁡C=√2/3,求b.

已知函数f(x)=xeax-ex.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<-1,求a的取值范围;(3)设n∈N^*,证明:1/+1/+⋯+1/>ln⁡( n+1).

设双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±√3 x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1 ),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为-√3的直线与过Q且斜率为 的直线交于点M,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M在AB上;②PQ//AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.

如果棱台的两底面积分别是S,S',中截面的面积是S0,那么【 】

如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=【 】

一个长方体共一顶点的三个面的面积分别是,, ,这个长方体对角线的长是【 】

一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是【 】

如图,E,F分别为正方形的面ADD1A1、面BCC1B1的中心,则四边形在该正方形BFD1E的面上的射影可能是________.(要求:把可能的图的序号都填上)

已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一第直径,C是下底面圆周上的一个动点,则ABC的面积取值范围为__________.

南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180km2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)【 】

正三棱台高为1,上下底边长分别为3√3和4√3,所有顶点在同一球面上,则球的表面积是【 】

如图,三棱柱ABC-A1B1C1中,若E,F分别为AB,AC的中点,平面EB1C1F将三棱柱分成体积为V1,V2的两部分,那么V1:V2=__________.

设过长方体同一个顶点的三个面的对角线长分别是a,b,c,那么这个长方体的对角线长是【 】

在棱长为 10 的正方体 ABCD − A1B1C1D1 中, P 为左侧面 ADD1A1 上一点, 已知点 P 到 A1D1 的距离为 3, 点 P 到 AA1 的距离为 2, 则过点 P 且与 A1C 平行的直线交正方体于 P、 Q 两点, 则 Q 点所在的平面是【 】

如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】

如图,在正方体ABCD-A1B1C1D1中E,F分别是BB1,CD的中点. (Ⅰ)证明AD⊥D1F;(Ⅱ)求AE与D1F所成的角;(Ⅲ)证明面AED⊥面A1FD1;(Ⅳ)设AA1=2,求三棱锥F-A1ED1的体积VF-A1ED1.

如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.

如图,已知长方体的对角线长为l,它与底面所成的角为α,底面两条对角线的夹角为β.求长方体的积体.

由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.

如图已知正方体ABCD-A1 B1 C1 D1,M,N分别是A1 D,D1 B的中点,则【 】

如图,正方体ABCD-A1B1C1D1中,P,Q,R,S分别为棱AB,BC,BB1,CD的中点,连接A1S,B1D.空间任意两点M,N,若线段MN上不存在点在A1S,B1D上,则称MN两点可视,则下列选项中与点D1可视的点为【 】

下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】

如图,从一个棱长为6米的正方体中裁去两个相同的正三棱锥,若正三棱锥的边长AB为4√2,则剩余何体的表面积为【 】