单项选择(2000年全国统考2000年全国新课程

一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是【 】

A、(1+2π)/2π

B、(1+4π)/4π

C、(1+2π)/π

D、(1+4π)/2π

答案解析

A

讨论

以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是【 】

若a>b>1,p=,Q=(lga+lgb),R=lg((a+b)/2),则【 】

《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额。此项税款按下表分段累进计算:全月应纳税所得额 税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%… …某人1月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于【 】

函数y=-xcos⁡x的部分图像是【 】

已知sin⁡α>sin⁡β,那么下列命题成立的是【 】

一个长方体共一顶点的三个面的面积分别是,, ,这个长方体对角线的长是【 】

在复平面内,把复数3-i对应的向量按顺序时针方向旋转π/3,所得向量对应的复数是【 】

设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是【 】

如图,给出定点A(a,0)(a>0)和直线l:x=-1.B是直线l上的动点,∠BOA的平分线交AB于点C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.

已知函数y=f(x)的图像是自原点出发的一条折线.当n≤y≤n+1(n=0,1,2⋯)时,该图像是斜率为bn的线段(其中正常数b≠1),设数列{xn }由f(xn)=n(n=1,2⋯)定义.(Ⅰ)求x1,x2和xn的表达式;(Ⅱ)求f(x)的表达式,并写出其定义域;(Ⅲ)证明:y=f(x)的图像与y=x的图像没有横坐标大于1的交点.

如果棱台的两底面积分别是S,S',中截面的面积是S0,那么【 】

向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图像如图所示,那么水瓶的形状是【 】

球面上有3个点,其中任意两点的球面距离都等于大圆周长的1/6,经过这3个点的小圆的周长为4π,那么这个球的半径为【 】

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,EF=3/2,EF与面AC的距离为2,则该多面体的体积为【 】

如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=【 】

一个四面体的所有棱长都为√2,四个顶点在同一球面上,则此球的表面积为【 】

一个正三棱台的下底和上底的周长分别为30cm和12cm,且侧面积等于两底面积之差,求斜高.

如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.

如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=π/3. (Ⅰ)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(Ⅱ)求这个平行六面体的体积.

设P是一个凸多面体,满足以下两个性质:(i) P的每一个顶点恰属于 3 个不同的面;(ii) 对任意 k ≥3, P 中 k 边形面都恰有偶数个。有一只蚂蚁从某条棱的中点出发,沿棱爬行,走一条闭合路径 L ,经过 L 上每一点恰好一次,最终回到出发点。 L 将 P 的表面分为两部分,使得对任意的 k ≥3,两部分中 k 边形面的个数相等。求证:蚂蚁在爬行中向左转和向右转的次数相等。