问答题(1999年全国统考

如图,给出定点A(a,0)(a>0)和直线l:x=-1.B是直线l上的动点,∠BOA的平分线交AB于点C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.

答案解析

依题意,记B(-1,b),(b∈R),则直线OA和OB的方程分别为y=0和y=-bx.设点C(x,y),则有0≤x<a,由OC平分∠AOB,知点C到OA,OB距离相等.根据点到直线的距离公式得|y|=|y+bx|/.①依题设,点C在直线AB上,故由有y=-b/(1+a) (x-a).由x-a≠0,得b=-(1+a)y/(x-a).②将②式代入①式得y2 [1+ ]=[y-]2,整理得y2 [(1-a) x2-2ax+1(1+a) y2 ]=0,若y...

查看完整答案

讨论

设O为坐标原点,直线y=-√3(x-1)过抛物线C:y²=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则【 】

已知抛物线C:y²=8x的焦点为F,点M在C上.若M到直线x=-3距离为5,则|MF|=【 】

在平面直角坐标系xOy中,抛物线Γ:x²=2px(p>0)的焦点为F,过Γ上一点P(异于O)作Γ的切线,与y轴交于点Q.若|FP|=2,|FQ|=1,则向量OP→与OQ→的数量积为__________.

已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。

设 O 为坐标原点, 直线 x = 2 与抛物线 C : y2 = 2px (p > 0) 交于 D, E 两点, 若 OD ⊥ OE, 则 C 的焦点坐标为【 】

斜率为 的直线过抛物线 C : y2 = 4x 的焦点, 且与 C 交于 A, B 两点, 则 |AB| =______.

设抛物线的顶点为 O, 焦点为 F , 准线为 l. P 是抛物线上异于 O 的一点, 过 P 作 PQ ⊥ l 于 Q, 则线段 FQ 的垂直平分线【 】

如图, 已知椭圆 C1: x2/2+y2=1, 抛物线 C2: y2=2px (p > 0), 点 A 是椭圆 C1 与抛物线 C2 的交点, 过点 A的直线 l 交椭圆 C1 于点 B, 交抛物线 C2 于 M (B, M 不同于 A).(I) 若 p=1/16 , 求抛物线 C2 的焦点坐标;(II) 若存在不过原点的直线 l 使 M 为线段 AB 的中点, 求 p 的最大值.

已知函数y=x2+(2m+1)x+m2-1(m为实数)(1) m是什么数值时,y的极值是0?(2) 求证:不论m是什么数值,函数图像(即抛物线)的顶点都在同一条直线l1上.画出m=-1,0,1时抛物线的草图,来检验这个结论.(3) 平行于l1的直线中,哪些与抛物线相交,哪些不相交?求证:任一条平行于l1而与抛物线相交的直线,被各抛物线截出的线段都相等.

抛物线的方程是y2=2x,有一个半径为1的圆,圆心在x上运动.问这个圆运动到什么位置时,圆与抛物线在交点处的切线互相垂直?(注:设P(x0,y0)是抛物线y2=2px上一点,则抛物线在P点处的切线斜率是p/y0 )

求经过定点M(1,2),以y轴为准线,离心率为1/2的椭圆的左顶点的轨迹方程.

已知椭圆Γ的方程x2/a2 +y2/b2 =1(a>b>0),点P的坐标为 (-a,b).(1) 若直角坐标平面上的点 M,A(0,-b),B(a,0)满足=1/2(+),求点M的坐标;(2) 设直线l1:y=k1 x+p交椭圆Γ于C,D两点,交直线l2:y=k2 x 交于点E,若k1•k2=-b2/a2 ,证明:E为CD的中点;(3) 对于椭圆Γ上的点Q(acos⁡θ,bsin θ)(0<θ<π),如果椭圆Γ上存在不同的两点P1, P2,使得+=,写出求作点P1,P2的步骤,并求出使P1, P2存在的θ的取值范围.

设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】

如图,直线l的方程是x=-p/2,其中p>0;椭圆的中心为D(2+p/2,0),焦点在x轴上,长半轴长为2,短半轴长为1,它的一个顶点这A(p/2,0).问:p在哪个范围取值时,椭圆上有四个不同的点,它们中每一个点到点A的距离等于该点到直线l的距离?

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.

椭圆C与椭圆(x-3)2/9+(y-2)2/4=1关于直线x+y=0对称,椭圆C的方程是【 】

椭圆x2/12+y2/3=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1 |是|PF2 |的【 】

已知两点M(1,5/4),N(-4,-5/4),给出下列曲线方程:①4x+2y-1=0 ②x2+y2=3③x2/2+y2=1 ④x2/2-y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是【 】

设椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F1右准线为l1.若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是________.

已知Γ:x2/2+y2=1,F1,F2是其左、右焦点,直线l过点P(m,0)(m≤-),交椭圆于A,B两点,且A,B在x轴上方,点A在线段BP上.(1)若B是上顶点,||=||,求m的值;(2)若∙=1/3,且原点O到直线l的距离为4/15,求直线l的方程;(3)证明:对于任意m<-,使得//的直线有且仅有一条.