问答题(1990年全国统考

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.

答案解析

设所求椭圆的直角坐标方程是x2/a2 +y2/b2 =1,其中a>b>0由e2=c2/a2 =(a2-b2)/a2 =1-(b/a)2可得b/a===1/2,即a=2b.设椭圆上的点(x,y)到点P的距离为d,则d2=x2+(y-3/2)2 =a2 (1-y2/b2 )+y2-3y+9/4 =4b2-3y2-3y+9/4 =-3(y+1/2)2+4b2+3,其中-b≤y≤b.如果b<...

查看完整答案

讨论

求曲线y2=-16x+64的焦点.

过点M(-1,0)的直线l1与抛物线y2=4x交于P1,P2两点.记:线段P1P2的中点这P;过点P和这个抛物线的焦点F的直线为l2;l1的斜率为k.试把直线l2的斜率与直线l1的斜率之比表示为k的函数,并指出这个函数的定义域、单调区间,同时说明在每一单调区间上它是增函数还是减函数.

在抛物线y=4x2上求一点,使该点到直线y=4x-5的距离最短.

定长为3的线段AB的两个端点在抛物线y2=x上移动,记线段AB的中点为M.求点M到y轴的最短距离,并求此时点M的坐标.

设椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F1右准线为l1.若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是________.

双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.

在平面直角坐标系xOy中,已知点F1(-,0),F2 (,0),点M满足:|MF1|-|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=1/2上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|∙|TB|=|TP|∙|TQ|,求直线AB的斜率与直线PQ的斜率之和.

已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为【 】

已知双曲线x2/a2 -y2/b2 =1(a>0,b>0)的右焦点与抛物线y2=2px(p>0)的焦点重合,抛物线的准线交双曲线于A、B两点,交双曲线的渐近线与C、D两点,若|CD|=√2|AB|,则双曲线的离心率为【 】

求椭园25x2+9y2=100的长轴和短轴的长、焦点坐标,并且画出它的图像。

已知椭圆x2/6+y2/3=1,直线l与椭圆在第一象限交于A,B两点,与x轴,y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2√3,则直线l的方程为___________.

椭圆C:x2/a2 +y2/b2 =1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为1/4,则C的离心率为【 】

已知Γ:x2/a2 +y2/b2 =1(a>b>0)的左、右焦点分别为F1 (-√2,0),F2 (√2,0),A为Γ的下顶点,M为直线l:x+y-4√2=0上一点.(1)若a=2,AM的中点在x轴上,求点M的坐标;(2)直线l交y轴于点B,直线AM经过点F2,若△ABM有一个内角的余弦值为3/5,求b;(3)若椭圆Γ上存在点P到直线l的距离为d,且满足d+|PF1 |+|PF2 |=6,当a变化时,求d的最小值.

已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E,F,G分别在BC,CD,DA上移动,且BE/BC=CF/CD=DG/DA,P为GE与OF的交点(如图).问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.

已知椭圆方程x2/a2 +y2/b2 =1,F为右焦点,A为右顶点,B为上顶点,|BF|/|AB| =√3/2.(1)求椭圆的离心率e;(2)已知直线l与椭圆有唯一交点M,直线l交y轴于点N,|OM|=|ON|,∆OMN的面积为√3,求椭圆的标准方程.

Find the area of the triangle out off from the first quadrant by the tangent to the ellipse 2x² + 3y² = 14 at the point (1, 2).

设P点在椭圆所引之二切线与其长轴之夹角为θ1,θ2,试就下列情形分别求P之轨迹.(1).tanθ1+tanθ2 为一定值.(2).cotθ1+cotθ2 为一定值.

椭圆x2/a2 +y2/b2 =1上三点P,Q,R之离心角顺次为θ,ϕ,φ,试示P,Q,R处三切线所成三角形之面积(不计符号)为abtan (θ-ϕ)/2 tan (θ-φ)/2 tan (φ-θ)/2

试求经过二曲线 x²+2y² - 4x - 2y -6 =0及y² +xy-8 =0之交点且与x轴相切之圆锥曲线方程式.

设 P 为圆上之任意点,且 F 为一焦点,证明以 FP 及椭圆之长轴各为直径之圆必相内切.