在抛物线y=4x2上求一点,使该点到直线y=4x-5的距离最短.
在抛物线y=4x2上求一点,使该点到直线y=4x-5的距离最短.
设P(x,y)为抛物线上任一点,则该点到直线y=4x-5的距离
d==
=(x2-x+5/4)=[(x-1/2)2+1]
从而,当x=1/2时,d有最小值,此时P点的坐标为(1/2,1).
试证在抛物线正焦弦两端点所作切线互相垂直,又若此抛物线之方程式为x²=2px,试求其在上述二切线为坐标轴时之新方程式.
F 点为抛物线 y² = 16x 之焦点,O 点为顶点,P 点为抛物线上任一点,PQ 为切线,自 O 点至 PQ 线之垂线与 FP 线相交 R 点,求 R 点之轨迹之方程式并绘其图形.
从点(-8,8)引 2xy +y² =8 的两条切线,求它们的夹角.
若相相之二抛物线具有相同之顶点,且其主轴互相垂直,试证其公切线必与二抛物线各切于其通径之一端.
设 F 是抛物线的焦点,在抛物线上任取一点 P 与焦点连接,由 P 作 PQ平于主轴,试证 P 点的法线平分 ∠FPQ.
在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,1/2)的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3√3.
在边长为1的等边三角形ABC中,D为线段BC上的动点,DE⊥AB且交AB于点E,DF//AB交AC于点F,则|2+|的值为__________;(+)∙最小值为__________.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知sinA:sinB:sinC=2:1:√2,b=√2.(1)求a的值;(2)求cosC的值;(3)求sin(2C-π/6)的值.
已知△ABC,若对任意t∈R,|(BA)→-t(BC)→ |≥|(AC)→|,则△ABC一定为【 】。
在△ABC中,点D在边AB上,BD=2DA.记=m,=n,则=【 】
已知a→=(3,4),b→=(1,0),c→=a→+tb→,若<a→,c→>=<b→,c→>,则t=【 】
设向量a,b的夹角的余弦值为1/3,且|a|=1,|b|=3,则(2a+b)⋅b=_________.
已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当AC/AB取得最小值时,BD=________.
已知向量a=(m,3),b=(1,m+1).若a⊥b,则m=__________.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=√5 c,cosC=3/5.(1)求sinA的值;(2)若b=11,求△ABC的面积.