问答题(2023年新高考Ⅰ

在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,1/2)的距离,记动点P的轨迹为W.

(1)求W的方程;

(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3√3.

答案解析

(1)设点P(x,y),则|y|=,整理得y=x²+1/4,∴W的方程为y=x²+1/4.(2)如图,假设矩形ABCD的顶点A、B、C在W上,则AB⊥BC,设B(x1,x1²+1/4),直线BC的斜率为k,则AB的斜率为-1/k,直线BC的方程表示为:y=kx+x1²+1/4-kx1,与抛物线方程y=x²+1/4联立得:x²-kx-x1²+kx1=0,∴|x1-x2 |===|k-2x1 |,∴BC=|k-2x1 |同理可得,AB=|-1/k-2x1 |= |1/k+2x1 |,∴AB+BC= (|k-2x1 |+1/|k| ⋅|1/k+2x1 |)由...

查看完整答案

讨论

给定双曲线x2-y2/2=1.(1) 过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.(2) 过点B(1,1)能否作直线过点m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.

已知椭圆Γ的方程x2/a2 +y2/b2 =1(a>b>0),点P的坐标为 (-a,b).(1) 若直角坐标平面上的点 M,A(0,-b),B(a,0)满足=1/2(+),求点M的坐标;(2) 设直线l1:y=k1 x+p交椭圆Γ于C,D两点,交直线l2:y=k2 x 交于点E,若k1•k2=-b2/a2 ,证明:E为CD的中点;(3) 对于椭圆Γ上的点Q(acos⁡θ,bsin θ)(0<θ<π),如果椭圆Γ上存在不同的两点P1, P2,使得+=,写出求作点P1,P2的步骤,并求出使P1, P2存在的θ的取值范围.

设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】

已知方程x2/(2+λ)-y2/(1+λ)=1表示双曲线,求λ的取值范围.

已知双曲线方程x2/20-y2/5=1,那么它的焦距是【 】

如果曲线x2-y2-2x-2y-1=0经过平移坐标轴后的新方程为x'2-y'2=1,那么新坐标系的原点在原坐标系中的坐标为【 】

如图,直线l的方程是x=-p/2,其中p>0;椭圆的中心为D(2+p/2,0),焦点在x轴上,长半轴长为2,短半轴长为1,它的一个顶点这A(p/2,0).问:p在哪个范围取值时,椭圆上有四个不同的点,它们中每一个点到点A的距离等于该点到直线l的距离?

如果双曲线x2/64-y2/36=1上一点P到它的右焦点的距离是8,那么点P到它的右准线的距离是【 】

双曲线y2/16 - x2/9=1的准线方程是__________.

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.