单项选择(1988年全国统考

已知双曲线方程x2/20-y2/5=1,那么它的焦距是【 】

A、10

B、5

C、2

D、

答案解析

A

讨论

设B是椭圆C:x2/a2 +y2/b2 =1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率取值范围是【 】

设B是椭圆C:x2/5+y2=1的上顶点,点P在C上,则|PB|的最大值为【 】

已知Γ:x2/2+y2=1,F1,F2是其左、右焦点,直线l过点P(m,0)(m≤-),交椭圆于A,B两点,且A,B在x轴上方,点A在线段BP上.(1)若B是上顶点,||=||,求m的值;(2)若∙=1/3,且原点O到直线l的距离为4/15,求直线l的方程;(3)证明:对于任意m<-,使得//的直线有且仅有一条.

已知椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F,上顶点为B,离心率为(2√5)/5,且|BF|=√5.(1)求椭圆的方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P,若MP//BF,求直线l的方程.

已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。

已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.

已知椭圆x2/16+y2/4=1的左右焦点分别为F1与F2,点P在直线l:x-√3 y+8+2√3=0上.当∠F1 PF2取最大值时,比|PF1 |/(|PF2 |)的值为____________.

已知椭圆C:x2/a2 +y2/b2 =1(a>b>0),C的上顶点为A,两个焦点为F1,F2,离心率为1/2.过F1且垂直于AF2的直线与C交于D,E两点,|DE|=6,则△ADE的周长是________________.

Find the locus of the point of intersection of lines drawn through the foci of an ellipse parallel to conjugate diameters.

试讨论方程式 3y² + 2x + 1=0 所表示之曲线.