填空题(2023年北京市

已知向量|a |=1,|b |=2,且a,b的夹角为120°.若a+tb与ta+b的夹角为锐角,则t的取值范围是__________.

答案解析

((5-√21)/2,1)∪(1,(5+√21)/2)

【解析】

解答过程见word版

讨论

已知集合A={1,2,3},映射f:A→A,且满足对任意x∈A,有f(f(x))≥x,且这样的f有________个.

已知函数f(x)=sinωx+sin2x,其中ω∈N+,ω≤2023.若f(x)<2恒成立,则满足题设的常数ω的个数为________.

S是集合{1,2,…,2023}的子集,满足任意两个元素的平方和不是9的倍数,则|S|的最大值是______(这里|S|表示S的元素个数).

如图,∠ABC=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E.已知AD=8,BE=3,则DE=______.

已知数列{an },{bn}的项数均为m(m>2),且an,bn∈{1,2,⋯,m},{an },{bn}的前n项和分别为An,Bn,并规定A0=B0=0.对于k∈{0,1,2,⋯,m},定义rk=max⁡{i|Bi≤Ai,i∈{0,1,2,⋯,m}},其中maxM表示数集M中最大的数.(1)若a1=2,a2=1,a3=3,b1=1,b2=3,b3=3,求r0,r1,r2,r3的值;(2)若a1≥b1,2rj≤rj+1+rj-1,j=1,2,⋯,m-1,求rn;(3)证明:存在p,q,s,t∈{0,1,2,⋯,m},满足p>q,s>t,使得Ap+Bt=Aq+Bs.

设函数f(x)=x-x³eax+b,曲线y=f(x)在点(1,f(1))的切线方程为y=-x+1.(1)求a,b的值;(2)设g(x)=f'(x),求g(x)的单调区间;(3)求f(x)极值点的个数.

已知椭圆E:x²/a² +y²/b² =1(a>b>0)的离心率为√3/5.设椭圆E的上、下顶点分别为A,C,左、右顶点分别为B,D,|AC|=4.(1)求椭圆E的方程;(2)点P在椭圆E的第一象限上运动,直线PD与直线BC交于点M,直线AP与直线y=-2交于点N.求证:MN//CD.

为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段 价格变化第1天到第20天 - + + 0 - - - + + 0 + 0 - - + - + 0 0 +第21天到第40天 0 + + 0 - - - + + 0 + 0 + - - - + 0 - +用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概;(3)假设该农产品每天的价格变化只受前一天价格变化的影响,判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大(结论不要求证明).

设函数f(x)=sinωxcosφ+cosωxsinφ(ω>0,|φ|<π/2).(1)若f(0)=-√3/2,求φ的值.(2)已知f(x)在区间[-π/3,2π/3]上单调递增,f(2π/3)=1,再从条件①、②、③中选择一个作为已知,使函数f(x)存在,求ω,φ的值.条件①:f(π/3)=√2;条件②:f(-π/3)=-1;条件③:f(x)在区间[-π/2,-π/3]上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.

如图,在三棱锥P-ABC中,PA⊥平面ABC,PA=AB=BC=1,PC=√3. (1)求证:BC⊥平面PAB;(2)求二面角A-PC-B的大小.

已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.(1)求p;(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.

设B是椭圆C:x2/5+y2=1的上顶点,点P在C上,则|PB|的最大值为【 】

双曲线x2/4 - y2/5=1的右焦点到直线x+2y-8=0的距离为______.

已知抛物线C:y2=2px(p>0)的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足=9,求直线OQ斜率的最大值.

已知圆C:x2+y2=4,直线L:y=kx+m,则当k的值发生变化时,直线被圆C所截的弦长的最小值为1,则m的取值为【 】

已知抛物线C:y2=4x,焦点为F,点M在C上,且|FM|=6,则M的横坐标是______;作MN⊥x轴于N,则S△FMN=______.

已知椭圆E:x2/a2 +y2/b2 =1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.

已知圆x2+y2-2x-4y=0,则该圆的圆心坐标为__________.

已知抛物线y2=2px(p>0),若第一象限的点A,B在抛物线上,焦点为F,|AF|=2,|BF|=4,|AB|=3,直线AB的斜率为__________.

已知Γ:x2/2+y2=1,F1,F2是其左、右焦点,直线l过点P(m,0)(m≤-),交椭圆于A,B两点,且A,B在x轴上方,点A在线段BP上.(1)若B是上顶点,||=||,求m的值;(2)若∙=1/3,且原点O到直线l的距离为4/15,求直线l的方程;(3)证明:对于任意m<-,使得//的直线有且仅有一条.