已知椭圆E:x2/a2 +y2/b2 =1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4.
(1)求椭圆E的标准方程;
(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.
已知椭圆E:x2/a2 +y2/b2 =1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4.
(1)求椭圆E的标准方程;
(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.
(1)因为椭圆E过点A(0,-2),所以b=2.根据四个顶点围成的四边形面积为4√5得,1/2×2a×2b=2ab=4,代入b=2得,a=,故椭圆的标准方程为:x2/5+y2/4=1.(2)由题意可得,直线l的方程为y=kx-3,设B(x1,y1 ),C(x2,y2).联立,消去y整理得:(5k2+4) x2-30kx+25=0,∆=(-30k)2-4(5k2+4)×25=400(k2-1)>0,故k>1或k<-1.由韦达定理,得x1+x2=30k/(5k2+4),x1 x2=25/(5k2+4),①所以,y1+y2=k(x1+x2 )-6=-24/(5k2+4).②y1 y2=...
查看完整答案已知点 O(0, 0), A(−2, 0), B(2, 0). 设点 P 满足 |PA| − |PB| = 2, 且 P 为函数 y=3 图像上的点,则 |OP| =【 】
如图,已知椭圆长轴|A1A2 |=6,焦距|F1F2 |=4,过椭圆焦点F1作一直线,交椭圆于两点M,N,设∠F2F1M=α(0≤α<π),当α取什么值时,|MN|等于椭圆短轴的长?
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.
已知点P在直线x=2上移动,直线l通过原点且与OP垂直,通过点A(1,0)及点P的直线m和直线l交于点Q.求点Q的轨迹方程,并指出该迹的名称和它的焦点坐标.
已知两点P(-2,2),Q(2,2)以及一条直线l:y=x.设长为的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.(要求把结果写成普通方程)
自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.
过点(1,2)且与直线2x + y - 1 = 0平行的直线方程是__________.
如果AC < 0,且BC < 0,那么直线Ax + By + C = 0不通过【 】
已知直线l1和l2夹角的平分线为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是【 】