已知两点P(-2,2),Q(2,2)以及一条直线l:y=x.设长为的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.(要求把结果写成普通方程)
已知两点P(-2,2),Q(2,2)以及一条直线l:y=x.设长为的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.(要求把结果写成普通方程)
由于线段AB在直线y=x上移动,且AB长为√2,所以可设点A和B分别是(a,a)和(a+1,a+1),其中a为参数.于是可得直线PA的方程是y-2=(a-2)/(a+2) (x+2) (a≠-2),(1)直线QB的方程是y-2=(a-1)/(a+1) x (a≠-1). (2)(1) 当(a-2)/(a+2)=(a-1)/(a+1),即a=0时,直线PA和QB平行,无交点.(2) 当a≠0时,直线PA和QB相交,设交战为M(x,y),由(2)...
查看完整答案设人眼在墙顶上观察一塔,测得塔之全长所夹之角为θ,设墙高为h尺,墙与塔之距离为d尺.试证:(h²+d²)sinθ/(hsinθ+dcosθ)尺为塔这高.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
试证三角形∠A之内角平分线之长为2bc∙cos(A/2)/(b+c).
已知一点 A(-1,-2),求至椭圆 x² + 5y² = 5 的切线方程.
有三角形底边长是 2a,求顶点的轨迹,使其它二边的相乘积为 a².
堤上有塔高 50 尺,自堤下地面某点测得塔顶之仰角为 75°,塔底之仰角为 45°,求堤高.
△ABC 之底边 BC 的位置及长均为已知,自 B 至 AC 边之中线长亦为已知,求 A 点之轨迹.
已知在△ABC中,A+B=3C,2 sin(A-C)=sinB.(1)求sinA;(2)设AB=5,求AB边上的高.
在平面直角坐标系中,函数y=(x+1)/(|x|+1)的图像上有三个不同的点位于直线l上,且这三个点的横坐标之和为0.求l的斜率的取值范围.
点 (0, −1) 到直线 y = k(x + 1) 距离的最大值为【 】
若直线 l 与曲线 y = 和圆 x2 + y2 = 1/5 相切, 则 l 的方程为【 】
曲线y=(2x-1)/(x+2)在点(-1,-3)处的切线方程为__________.
已知点A(-2,3),B(0,a),若直线AB关于y=a的对称直线与圆(x+3)2+(y+2)2=1存在公共点,则实数a的取值范围为________.