计算题(1985年全国统考

设 |a|≤1,求arccosa+arccos⁡(-a)的值.

答案解析

π

讨论

已知椭圆Γ的方程x2/a2 +y2/b2 =1(a>b>0),点P的坐标为 (-a,b).(1) 若直角坐标平面上的点 M,A(0,-b),B(a,0)满足=1/2(+),求点M的坐标;(2) 设直线l1:y=k1 x+p交椭圆Γ于C,D两点,交直线l2:y=k2 x 交于点E,若k1•k2=-b2/a2 ,证明:E为CD的中点;(3) 对于椭圆Γ上的点Q(acos⁡θ,bsin θ)(0<θ<π),如果椭圆Γ上存在不同的两点P1, P2,使得+=,写出求作点P1,P2的步骤,并求出使P1, P2存在的θ的取值范围.

若实数x,y,m满足|x- m|>|y- m|,则称x比y远离m.(1) 若x2-1比1远离0,求x的取值范围;(2) 对于任意两个不相等的正数a,b.证明:a3+b3比a2b+ab2 远离 2ab;(3) 已知函数f(x) 的定义域 D={x|x≠kπ/2+π/4,k∈Z,x∈R}. 任取x∈D,f(x)等于sinx和 cosx中远离0的那个值,写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

如图所示,为了制作一个圆柱形灯笼,先要制作4 个全等的矩形骨架,总计耗用9.6 米铁丝。 骨架将到柱底面8 等分,再用S 平方米塑輯片制成圆柱的侧面和下底面(不安装上底面).(Ⅰ) 当圆柱底面半径r 为何值时, S 取得最大值? 并求出该最大值(结果精确到0.01 平方米);(Ⅱ) 在灯笼内,以矩形骨架的頂点为端点, 安装一些霓虹灯,当灯笼底面半径为0.3 米时,求图中两根直线型霓虹灯A1B3,A3B5所在异面直线所成角的大小(结果用反三角函数值表示).

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(Ⅰ)证明:{an - 1} 是等比数列;(Ⅱ)求数列{Sn}的通项公式。请指出n为何值时,Sn取得最小值,并说明理由.

已知0<x<π/2,简化: lg⁡(cos⁡x•tan⁡x+1-2sin2⁡(x/2))+lg⁡[cos⁡( x-π/4)]-lg⁡( 1+sin⁡2 x).

某人要作一个三角形,要求它的三条高的长度分别是1/13 ,1/11 ,1/5 ,则此人将【 】

若x0是方程(1/2 )x=x1/3的解,则x0属于区间【 】

直线L的参数方程式(t∈R),则 L的方向向量d可以是 【 】

“x=2kπ+π/4(k∈Z)”是“tanx=1 ”成立的【 】

从集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件(1) Φ ,U都要选出(2) 对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有_____种不同的选法.