已知函数f(x)=tanx,x∈(0,π/2).若x1,x2∈(0,π/2),且x1≠x2,证明1/2 [f(x1)+f(x2)]>f((x1+x2)/2).
tanx1+tanx2=sinx1/cosx1 +sinx2/cosx2 =sin(x1+x2)/(cosx1 cosx2 )=2sin(x1+x2)/(cos(x1+x2 )+cos(x1-x2)).∵x1,x2∈(0,π/2),x1≠x2∴ 2sin(x1+x2 )>0,cosx1 cosx2>0,且0<cos(x1-x2...
查看完整答案