问答题(2020年上海市

已知 f(x) = sinωx, ω> 0.

(1) T = 4π, 求ω及f(x)=1/2时的解集;

(2) ω = 1, g(x)=[f(x)]2-f(-x)f(π/2-x), 求 x∈[0,π/4] 时 g(x) 的值域.

答案解析

(1) 因为 T=4π=2π/|ω|, 所以ω=±1/2. 又因为 ω > 0, 所以 ω=1/2.由上可知 sinx/2=1/2 , 故 x/2=kπ+(-1)k π/6 , k ∈ Z. 故解集为 {x|x=2kπ+(-1)k π/3,k∈Z}.(2) 由己知得...

查看完整答案

讨论

已知 ABCD 是边长为 1 的正方形, 绕其中一条轴 AB 旋转成一个圆柱.(1) 求该圆柱的表面积;(2) 将 DC 旋转 90° 至 C1D1, 求线 C1D 与平面 ABCD 的夹角.

命题 p : 存在 a≠ 0, 对于任意的 x, 使 f(x + a) < f(x) + f(a); 命题 q1 : f(x) 为单调递减函数且 f(x) > 0恒成立; 命题 q2 : f(x) 为单调递增函数且存在 x0 < 0, 使 f(x0) = 0. 则下列说法正确的是【 】

在棱长为 10 的正方体 ABCD − A1B1C1D1 中, P 为左侧面 ADD1A1 上一点, 已知点 P 到 A1D1 的距离为 3, 点 P 到 AA1 的距离为 2, 则过点 P 且与 A1C 平行的直线交正方体于 P、 Q 两点, 则 Q 点所在的平面是【 】

已知直线 l 的解析式为 3x − 4y + 1 = 0, 则下列各式是 l 的参数方程的是【 】

已知 a, b ∈ R, 则下列各式正确的是【 】

设 k ∈ N∗, 已知平面向量 a1, a2, b1, b2, · · · , bk 两两不同, |a1 − a2| = 1. 对于任意 i = 1, 2, j = 1, 2, 3,· · · , k, |ai − bj| ∈ {1, 2}, 则 k 的最大值是_______________.

设 a ∈ R, 若存在定义域为 R 的函数 f(x) 满足: ① 对任意 x0 ∈ R, f(x0) 的值为 x02 或 x0; ② 关于 x 的方程 f(x) = a 无实数解. 则 a 的取值范围是_______________.

已知椭圆 x2/4+y2/3=1 , 点 P 在第二象限, F 是其右焦点, PF 交椭圆于 Q, Q 关于 x 轴对称点 Q′, 且PF ⊥ FQ′, 直线 PF 的方程是_______________.

从 6 个人中挑选 4 个人去值班, 每人最多值班一天, 第一天需要 1 个人, 第二天需要 1 个人, 第三天需要 2 个人, 则有 ________ 种排法.

已知数列 {an} 为不为零的等差数列, 且 a1 + a10 = a9, 则 (a1+a2+⋯+a9)/a10 =__________ .