问答题(2020年9月国际数学奥林匹克

有一叠n>1 张卡片.在每张卡片上写有一个正整数.这叠卡片具有如下性质:其中任意两张上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.

确定所有的n,使得可以推出所有卡片上的数均相等.

(爱沙尼亚供题)

答案解析

对所有n>1,都能推出卡片上的数均相等.等价地,我们证明如下命题:若a1≤a2≤⋯≤an是不全相等的正整数,则存在其中两个数,它们的算术平均值不等于其中任何一部分数的几何平均值.设 d=gcd⁡(a1,a2,⋯,an).若 d>1,可将a1,a2,⋯,an换成a1/d,a2/d,⋯,an/d,此时所有算术平均值和几何平均值都除以d。所证结论与原n个数等价 . 因此可不妨设a1,a2,⋯,an互素.由于a1,a2,⋯,an...

查看完整答案

讨论

给定整数n > 1 .在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司 A 和B,各运营 k 辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站) . A 公司的 k 辆缆车的k个起点互不相同, k 个终点也互不相同,并且起点较高的缆车,它的终点也较高. B 公司的缆车也满足相同的条件.我们称两个车站被某家公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数 k ,使得一定有两个车站被两家公司同时连接.(印度供题)

There are 4n pebbles of weights 1,2,3,…,4n. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles so that the following two conditions are both satisfied:● The total weights of both piles are the same.● Each pile contains two pebbles of each colour.有 4n 枚石子,重量分别为 1 , 2 , 3 , … , 4n .每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:可以把这些小石子分成两堆,且满足以下两个条件:● 两堆小石子的总重量相同;● 每堆中每种颜色的小石子各有两枚.(匈牙利供题)

The real numbers a,b,c,d are such that a≥b≥c≥d>0 and a+b+c+d=1.Prove that (a+2b+3c+4d)aabbccdd<1.设实数a、b、c、d满足 a≥b≥c≥d>0 ,且 a+b+c+d=1 . 证明:(a+2b+3c+4d)aabbccdd<1.(比利时供题)

Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hod:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.Prove that the following three lines meet in a point : the internal bisectors of angles ∠ADP and ∠PCB and the perpendicular bisector of segment AB.设P是凸四边形ABCD内部一点,且满足:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.证明:∠ADP的内角平分线、∠PCB的内角平分线和线段AB的中垂线,三线共点。 (波兰供题)

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].求证: n − m ⩽.

在平面直角坐标系 xOy 中, 已知椭圆 E : x2/4+y2/3=1 的左、右焦点分别为 F1、F2, 点 A 在椭圆 E 上且在第一象限内, AF2⊥F1F2, 直线 AF1 与椭圆 E 相交于另一点 B.(1) 求 △AF1F2 的周长;(2) 在 x 轴上任取一点 P , 直线 AP 与椭圆 E 的右准线相交于点 Q, 求 ∙的最小值;(3) 设点 M 在椭圆 E 上, 记 △OAB 与 △MAB 的面积分别为 S1, S2, 若 S2 = 3S1, 求点 M 的坐标.

某地准备在山谷中建一座桥梁, 桥址位置的竖直截面图如图所示: 谷底 O 在水平线 MN 上, 桥 AB 与 MN平行, OO′为铅垂线 (O′在 AB 上), 经测量, 左侧曲线 AO 上任一点 D 到 MN 的距离 h1 (米) 与 D 到 OO′ 的距离 a (米) 之间满足关式 h1=1/40 a2 ; 右侧曲线 BO 上任一点 F 到 MN 的距离 h2 (米) 与 F 到 OO′的距离 b (米)之间满足关系式 h2=-1/800 b3+6b . 已知点 B 到 OO′的距离为 40 米.(1) 求桥 AB 的长度;(2) 计划在谷底两侧建造平行于 OO′的桥墩 CD 和 EF , CE 为 80 米, 其中 C, E 在 AB 上 (不包括端点), 桥墩 EF 每米造价 k (万元), 桥墩 CD 每米造价 3/2 k (万元) (k > 0), 问 O′E为多少米时, 桥墩 CD 与 EF 的总造价最低?

在 △ABC 中, 角 A、 B、 C 的对边分别为 a、 b、 c. 已知 a = 3, c = , B = 45º. (1) 求 sinC 的值;(2) 在边 BC 上取一点 D, 使得 cos∠ADC =-4/5, 求 tan∠DAC 的值.

在三棱柱 ABC − A1B1C1 中, AB ⊥ AC, B1C ⊥ 平面 ABC, E, F 分别是 AC, B1C 的中点.(1) 求证: EF // 平面 AB1C1;(2) 求证: 平面 AB1C ⊥ 平面 ABB1.

在平面直角坐标系 xOy 中, 已知 P(/2,0), A、 B 是圆 C : x2+(y-1/2)2=36上的两个动点, 满足 P A = P B, 则 △P AB 面积的最大值是______.

设 a, b, c ∈ R, a + b + c = 0, abc = 1.(1) 证明: ab + bc + ca < 0;(2) 用 max{a, b, c} 表示 a, b, c 的最大值, 证明: max{a, b, c} ⩾.

已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则1/a+1/c≥3.

已知a,b,c为正数,且a3/2+b3/2+c3/2=1.证明:(1)abc≤1/9;(2) a/(b+c)+b/(a+c)+c/(a+b)≤1/(2).

设a²+b²+c²=1,x²+y²+z²=1,证ax+by+cz≤1.

设整数n≥100.伊凡把n,n+1,…,2n的每个数写在不同的卡片上.然后他将这n+1张卡片打乱顺序并分成两堆.证明:至少有一堆中包含两张卡片,使得这两张卡片上的数之和是一个完全平方数.

两只松鼠B和J为过冬收集了2021枚核桃. J将核桃依次编号为1到2021,并在它们最喜欢的树周围挖了一圈共2021个小坑.第二天早上, J发现B已经在每个小坑里放入了一枚核桃,但并未注意编号.不开心的J决定用2021次操作来改变这些核桃的位置.在第k次操作中把与第k号核桃相邻的两枚核桃交换位置.证明:存在某个λ,使得在第k次操作中, J交换了两枚编号为a和b的核桃,且a<k<b.

The Bank of Oslo issues two types of coin:aluminium(denoted A) and bronze(denoted B). Marianne has n aluminium coins and n bronze coins, arranged in a row in some arbitrary initial order.A chain is any subsequence of consecutive coins of the same type.Given a fixed positive integer k<2n, Marianne repeatedly performs the following operation:she identifies the longest chain containing the kth coin from the left and moves all coins in that chain to the left end of the row.For example, if n = 4 and k=4 the process starting from the ordering AABBBABA would beAABBBABA→BBBAAABA→AAABBBBA→BBBBAAAA.Find all pairs (n, k) with 1 ≤ k ≤2n such that for every initial ordering at some moment during the process,the leftmost n coins will all be of the same type. 译文:奥斯陆银行发行了两种货币:铝币(记为A)和铜币(记为B).玛丽安有n枚铝币和n枚铜币,以任意初始方式排成一排。定义一条链为任意由相同类型货币构成的连续子列。给定正整数k<2n,玛丽安重复地进行如下操作:她找出包含(从左到右)第k枚硬币的最长链,然后把该链中所有货币移到序列最左端。例如,n=4,k=4时,对于初始序列 AABBBABA,过程如下:AABBBABA→BBBAAABA→AAABBBBA→BBBBAAAA.求所有满足1≤k≤2n的数组(n,k),使得对任意初始序列,都可以在有限次操作内使左端为n枚相同的货币。

Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and refection) to place the elements of S around a circle such that the product of any two neighbours is of the form x2+x+k for some positive integer x. 译文:给定正整数 k,S是一个由有限个奇素数构成的集合.证明:至多只有一种方式(旋转或对称后相同视为同种方式)可以将S中的元素排成一个圆周,且满足任意两个相邻元素的乘积均可以写成x2+x+k的形式 (其中x为正整数) .

Find all the groups of positive integers (a,b,p) satisfying p is a prime number and ap=b!+p.译文:求所有正整数组(a,b,p),满足:p为素数且ap=b!+p.

设整数m≥2.设集合A由有限个整数(不一定为正)构成,且B1,B2,…,Bm是A的子集.假设对任意k=1,2,…,m,Bk中所有元素之和为mk.证明:A包含至少m/2个元素.