问答题(2023年7月国际数学奥林匹克

给定整数k≥2.求所有无穷正整数数列a1,a2,⋯,使得存在多项式

P(x)=xk+ck-1 xk-1+⋯+c1 x+c0

其中c0,c1,⋯,ck-1是非负整数,满足P(an )=an+1 an+2⋯an+k对任意正整数n成立.

答案解析

①先证{an}不减.由P(an )=an+1 an+2⋯an+k知P(an+1 )=an+2 an+3⋯an+k+1,∴(P(an+1))/(P(an))=(an+k+1)/an+1 因为P(x)系数均非负,所以P(x)在(0,+∞)递增.若存在n∈N+,使得an+1<an,则P(an+1 )<P(an),即an+k+1<an+1.必存在m∈{n+1,n+2,⋯,n+k},使得am+1<am,取其中最大的一个(最后一次下降),则有an+1>am+1.重复上述过程,又有:存在t∈{m+1,m+2,⋯,m+k},且at+1<at,有am+t>at+1.于是有无穷多个n1<n2<⋯,满足ani+1<ani,且an1>an2>⋯,经过有限项后必小于0,与ani为正整数矛盾.故{an}不减.②若an=an+1,则P(an )=P(an+1),于是an+1=an+k+1,而an+1≤an+2≤⋯≤an+k+1,所以an=an+1=⋯=an+k+1.向前推,由P(an-1 )=an an+1⋯an+k-1=an+1 an+2⋯an+1=P(an)知an-1=an,∴{an}为常数列.③若a1<a2<⋯.取一个足够大的正整数t,满足Ckr∙tr≥ck-r对1≤r≤k恒成立,则P(x)=xk+ck-1 xk-1+⋯+c1 x+c0≤xk+Ckk-1 txk-1+⋯+Ck1 tk-1 x+tk=(x+t)k于是an+1k≤an+1 an+2⋯an+k=P(an )≤(an+t)k,即an+1≤an+t.对固定的n,有an+k-an≤kt,设dk=an+k-an∈{1,2,⋯,kt},其中d1<d2<⋯<dk,而(d1,d2,⋯,dk...

查看完整答案

讨论

若方程x4-4x3-34x2+ax+b=0之根成等差级数,求a,b及四根.

设等差数列{an}的公差为d,且d>1,令bn=(n²+n)/an ,记Sn,Tn分别为数列{an },{bn}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{an}的通项公式;(2)若{bn}为等差数列,且S99-T99=99,求d.

已知等差数列 {an} 的前 n 项和为 Sn, 公差 d≠ 0, a1/d ⩽ 1. 记 b1 = S2, bn+1 = Sn+2 − S2n, n ∈ N∗, 下列不可能成立的是【 】

我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.

设 {an} 是公差为 d 的等差数列, {bn} 是公比为 q 的等比数列. 已知 {an + bn} 的前 n 项和为 Sn = n2 − n + 2n − 1 (n ∈ N∗), 则 d + q 的值是______.

若(z-x)2-4(x-y)(y-z)=0,求证:x,y,z成等差数列.

一个等差数列的第5项等于10,前3项的和等于3,那么【 】

Find the sum of the arithmetical series 49,44,39,… to 17 terms.

北京天坛的圆丘坛为古代祭天的场所, 分上、中、下三层, 上层中心有一块圆形石板 (称为天心石) , 环绕天 心石砌 9 块扇面形石板构成第一环, 向外每环依次增加 9 块, 下一层的第一环比上一层的最后一环多 9 块, 向外每 环依次也增加 9 块, 已知每层环数相同, 且下层比中层多 729 块, 则三层共有扇形面形石板 (不含天心石)【 】

记 Sn 为等差数列 {an} 的前 n 项和, 若 a1 = −2, a2 + a6 = 2, 则 S10 = ______.

已知 {an} 为等差数列, {bn} 为等比数列, a1 = b1 = 1, a5 = 5(a4 − a3), b5 = 4(b4 − b3).(I) 求 {an} 和 {bn} 的通项公式;(II) 记 {an} 的前 n 项和为 Sn, 求证: SnSn+2 < Sn+12 (n ∈ N∗);(III) 对任意的正整数 n, 设 cn = .求数列 {cn} 的前 2n 项和.

已知有限数列 {an} 项数为 m, 若其满足: |a1 − a2| ⩽ |a1 − a3| ⩽ · · · ⩽ |a1 − am|, 则称数列 {an} 满足性质 P .(1) 判断数列 3, 2, 5, 1 和数列 4, 3, 2, 5, 1 是否具有性质 P ;(2) 已知 a1 = 1, 公比为 q 的等比数列, 项数为 10, 具有性质 P , 求 q 的取值范围;(3) 若 an 是 1, 2, 3, · · · , m (m ⩾ 4) 的一个排列, bk = ak+1 (k = 1, 2, 3 · · · , m − 1), 数列 {an}, {bn} 都具有性质 P , 求所有满足条件的 {an}.

已知数列 {an}, {bn}, {cn} 中, a1 = b1 = c1 = 1, cn+1 = an+1 − an, cn+1=bn/bn+2 ∙cn (n ∈ N∗).(I) 若数列 {bn} 为等比数列, 且公比 q > 0, 且 b1 + b2 = 6b3, 求 q 的值及数列 {an} 的通项公式;(II) 若数列 {bn} 为等差数列, 且公差 d > 0, 证明: c1 + c2 + … + cn < 1 +1/d , n ∈ N∗.

试问数列:lg100,lg⁡(100sinπ/4),lg⁡(100sin2π/4),⋯,lg⁡(100sinn-1π/4),前多少项的和的值最大?并求出这大值(这里取lg2=0.301)

已知以AB为直径的半圆有一个内接正方形CDEF,其边长为1(如图).设AC=a,BC=b,作数列u1=a-b,u2=a2-ab+b2,u3=a3-a2b+ab2-b3,...uk=ak-ak-1b+ak-2b2-...+(-1)kbk;求证:un=un-1+un-2 (n≥3).

已知数列a1,a2,⋯an,⋯和数列b1,b2,⋯bn,⋯,其中a1=p,b1=q,an=pan-1,bn=qan-1+rbn-1 (n≥2)(p,q,r是已知常数,且q≠0,p>r>0).(1) 用p,q,r,n表示bn,并用数学归纳法加以证明;(2) 求.

全国统考数列与推理

已知x1>0,x≠1,且xn+1=,(n=1,2,⋯).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.

设数列a1,a2,…,an,…的前n 项的和Sn与an的关系是Sn=-ban+1-1/(1+b)n ,其中b是与n无关的常数,且b≠1.(1) 求an与an-1的关系;(2) 写出用n和b表示an的表达式;(3) 当0<b<1时,求极限Sn .

是否存在常数a,b,c使得等式1∙22+2∙32+⋯+n∙(n+1)2=(an2+bn+c)对一切自然数n都成立?并证明你的结论.

有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.

给定正整数m>1,求正整数n的最小值,使得对任意正整数a1,a2,…,an,b1,b2,…,bn,存在整数x1,x2,…,xn,满足以下两个条件:(1) ∃i∈{1,2,…,n}使得xi与m互质;(2) aixi = bixi ≡ 0(mod m).

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n, an与2的等差中项等于Sn与2的等比中项.(I)写出数列{an}的前3项;(Ⅱ)求数列{an}的通项公式(写出推证过程);(Ⅲ)令bn=1/2(an+1/an +an/an+1 )(n∈N),求(b1+b2+⋯+bn-n).

设{an}是首项为1的正项数列,且(n+1) - n+an+1an=0(n=1,2,3⋅⋅⋅),则它的通项公式是an=______.

在xOy平面上有一点列P1 (a1,b1 ),P2 (a2,b2 ),…,Pn (an,bn)对每个自然数n,点Pn位于函数y=2000∙(a/10)x (0<a<10)的图像上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.(I)求点Pn的纵坐标bn的表达式.(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围.(Ⅲ)设Bn=b1 b2…bn (n∈N).若a取(Ⅱ)中确定的范围内的最小整数,求数列{Bn}的最大项的项数.

设数列{an}的通项为an=2n-7(n∈N),则|a1|+|a2|+⋯+|a15|=______.

某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm, 10dm×6dm,24dm×3dm,三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么 Sk=________dm2.

已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.

数列{an}是递增的整数数列,且a1≥3,a1+a2+⋯+an=100,则n的最大值为【 】

定义Rp数列{an}:对p∈R满足:①a1+p≥0,a2+p=0;②∀n∈N*,a4n-1<a4n;③∀m,n∈N*,am+n∈{am+an+p,am+an+p+1}.(1)对前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{an}是R0数列 ,求a5的值;(3)是否存在p∈R,使得存在Rp数列{an},对∀n∈N*满足Sn≥S10?若存在,求出所有这样的p;若不存在,说明理由.