记 Sn 为等差数列 {an} 的前 n 项和, 若 a1 = −2, a2 + a6 = 2, 则 S10 = ______.
若 sinx = −2/3, 则 cos2x = _______.
设函数 f(x) = x3 − 1/x3 , 则 f(x)【 】
执行如图的程序框图, 若输入 k = 0, a = 0, 则输出的 k 为【 】
记 Sn 为等比数列 {an} 的前 n 项和. 若 a5 − a3 = 12, a6 − a4 = 24, 则 Sn/an=【 】
已知单位向量 a, b 的夹角为 60°, 则下列向量中, 与 b 垂直的是【 】
已知集合 A = {x| |x| < 3, x ∈ Z}, B = {x| |x| > 1, x ∈ Z}, 则 A ∩ B =【 】
f(x) =| x − a2 |+ |x − 2a + 1| .(1) 当 a = 2 时, 求不等式 f(x) ⩾ 4 的解集.(2) f(x) ⩾ 4, 求 a 的取值范围.
若方程x4-4x3-34x2+ax+b=0之根成等差级数,求a,b及四根.
设{an}为等差数列,bn=,记Sn,Tn分别为{an },{bn}的前n项和,S4=32,T3=16.(1)求{an}的通项公式(2)证明:当n>5时,Tn>Sn.
等差数列{an}满足a2021=a20+a21=1,则a1的值为__________.
已知等差数列{an}的公差d>0,首项an>0,Sn=1/(aiai+1),则Sn =________。
记Sn为数列{an }的前n项和,已知a1=1,{Sn/an }是公差为1/3的等差数列.(1)求{an}的通项公式;(2)证明:1/a1 +1/a2 +⋯+1/an <2.
已知{an }为等差数列,{bn}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{ k| bk=am+a1,1≤m≤500}中元素个数.
记Sn为数列{an }的前n项和.已知2Sn/n+n=2an+1.(1)证明:{an }是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.
问θ为何种数值时,sinθ+sin2θ+⋯+sinnθ+⋯成一收敛级数.
若a1,a2,⋯,an为已知正数,试求atctan(a1-a2)/(1+a1 a2)+atctan(a2-a3)/(1+a2 a3)+⋯+atctan(an-1-an)/(1+an-1 an)的值.
级数1!/102 -2!/103 +3!/104 -⋯是收敛的还是发散的?
令S=m²n/(2m(n2m+m2n)),则[100S]=________.
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】