已知等差数列{an}的公差d>0,首项an>0,Sn=1/(aiai+1),则Sn =________。
极限(C22+C32+C42+⋯+Cn2)/(n(C21+C31+C41+⋯+Cn1))=【 】
求极限[1/(n2+1)+2/(n2+1)+3/(n2+1)+⋯2n/(n2+1)].
已知等比数列{an}的公比q>1,并且a1=b(b≠0),求(a1+a2+a3+⋯+an)/(a6+a7+a8+⋯+an ).
已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,且Sn=a1+a2+⋯+an,那么Sn 的值等于【 】
已知{an}是公差不为零的等差数列,如果Sn是{an}的前n项和,那么(nan)/Sn )等于______.
[n(1-1/3)(1-1/4)(1-1/5)…(1-1/(n+1))]的值等于【 】
已知等差数列前三项为a,4,3a前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值,(Ⅱ)求 (1/S1 +1/S2 +⋯+1/Sn ).
已知数列 {an} 为不为零的等差数列, 且 a1 + a10 = a9, 则 (a1+a2+⋯+a9)/a10 =__________ .
已知等差数列 {an} 的前 n 项和为 Sn, 公差 d≠ 0, a1/d ⩽ 1. 记 b1 = S2, bn+1 = Sn+2 − S2n, n ∈ N∗, 下列不可能成立的是【 】
我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.
若(z-x)2-4(x-y)(y-z)=0,求证:x,y,z成等差数列.
设等差数列{an}的前n项和为Sn.已知a3=12,S12>0,S13<0.(Ⅰ)求公差d的取值范围.(Ⅱ)指出S1,S2,…,S12中哪一个值最大,并说明理由.
已知{an }为等差数列,{bn}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{ k| bk=am+a1,1≤m≤500}中元素个数.
记Sn为数列{an }的前n项和.已知2Sn/n+n=2an+1.(1)证明:{an }是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.
已知等差数列{an}的公差不为零,Sn为其前n项和,若S5=0,则Si (i=0,1,2,…,100)中不同的数值有________个。