计算题(1986年全国统考

img01.png.

答案解析

img01.png=img01.png 

=(-2+0)/(3+0)=1/3.

讨论

0−1 周期序列在通信技术中有着重要应用. 序列 a1a2 · · · an · · · 满足 a1 ∈ {0, 1} (i = 1, 2, · · · ), 且存在正整 数 m, 使得 ai+m = ai (i = 1, 2, · · · ) 成立, 则称其为 0−1 周期数列, 并称满足 ai+m = ai (i = 1, 2, · · · ) 的最小正整数 m 为这个序列的周期. 对于周期为 m 的 0−1 序列 a1a2 · · · an · · · , C(k) =(k = 1, 2, · · · , m−1)是描述其性质的重要指标. 下列周期为 5 的 0 − 1 序列中, 满足 C(k) ⩽ 1/5(k = 1, 2, 3, 4) 的序列是【 】

如图, 将钢琴上的 12 个键依次记为 a1, a2, · · · , a12, 设 1 ⩽ i ⩽ j ⩽ k ⩽ 12. 若 k − j = 3 且 j − i = 4, 则称 ai, aj, ak 为原位大三和弦; 若 k − j = 4 且 j − i = 3, 则称 ai, aj, ak 为原位小三和弦. 用这 12 个键可以构成的原 位大三和弦与原位小三和弦的个数之和为【 】

设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.

信息熵是信息论中的一个重要概念. 设随机变量 X 所有可能的取值为 1, 2, … , n, 且 P (X = i) = pi >0 (i = 1, 2, …, n), =1, 定义 X 的信息熵 H(X) = −log2 pi.【 】

将数列 {2n − 1} 与 {3n − 2} 的公共项从小到大排列得到数列 {an}, 则 {an} 的前 n 项和为 __________.

已知 {an} 为等差数列, {bn} 为等比数列, a1 = b1 = 1, a5 = 5(a4 − a3), b5 = 4(b4 − b3).(I) 求 {an} 和 {bn} 的通项公式;(II) 记 {an} 的前 n 项和为 Sn, 求证: SnSn+2 < Sn+12 (n ∈ N∗);(III) 对任意的正整数 n, 设 cn = .求数列 {cn} 的前 2n 项和.

已知有限数列 {an} 项数为 m, 若其满足: |a1 − a2| ⩽ |a1 − a3| ⩽ · · · ⩽ |a1 − am|, 则称数列 {an} 满足性质 P .(1) 判断数列 3, 2, 5, 1 和数列 4, 3, 2, 5, 1 是否具有性质 P ;(2) 已知 a1 = 1, 公比为 q 的等比数列, 项数为 10, 具有性质 P , 求 q 的取值范围;(3) 若 an 是 1, 2, 3, · · · , m (m ⩾ 4) 的一个排列, bk = ak+1 (k = 1, 2, 3 · · · , m − 1), 数列 {an}, {bn} 都具有性质 P , 求所有满足条件的 {an}.

已知数列 {an}, {bn}, {cn} 中, a1 = b1 = c1 = 1, cn+1 = an+1 − an, cn+1=bn/bn+2 ∙cn (n ∈ N∗).(I) 若数列 {bn} 为等比数列, 且公比 q > 0, 且 b1 + b2 = 6b3, 求 q 的值及数列 {an} 的通项公式;(II) 若数列 {bn} 为等差数列, 且公差 d > 0, 证明: c1 + c2 + … + cn < 1 +1/d , n ∈ N∗.

某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm, 10dm×6dm,24dm×3dm,三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么 Sk=________dm2.

已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.