求.
已知等差数列前三项为a,4,3a前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值,(Ⅱ)求 (1/S1 +1/S2 +⋯+1/Sn ).
已知数列{an },{bn }都是由正数组成的等比数列,公比分别为p,q,其中p>q且p≠1,q≠1,设cn= an+bn,Sn为数列{cn}的前n项和.求Sn/Sn-1 .
在等比数列{an}中,a1>1,且前n项和Sn满足Sn=1/a1 ,那么a1的取值范围是【 】
极限(C22+C32+C42+⋯+Cn2)/(n(C21+C31+C41+⋯+Cn1))=【 】
等差数列{an},{bn}的前n项和分别为Sn与Tn,若Sn/Tn =2n/(3n+1),则an/bn 等于【 】