极限(C22+C32+C42+⋯+Cn2)/(n(C21+C31+C41+⋯+Cn1))=【 】
A、3
B、1/3
C、1/6
D、6
极限(C22+C32+C42+⋯+Cn2)/(n(C21+C31+C41+⋯+Cn1))=【 】
A、3
B、1/3
C、1/6
D、6
B∵C22+C32+C42+⋯+Cn2=Cn+13=1/6(n+1)n(n-1),C21+C31+C41+⋯+Cn1=2+3+4+⋯+n=(n-1)(n+2)/2,∴原式=(n(n+1)(n-1))/...
查看完整答案4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种
从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙电视机各1台,则不同的取法共有【 】种。
在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共________种(用数字作答)。
有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担.从10人中选派4人承担这三项任务,不同的选法共有【 】
正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有________个(用数字作答).
四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有【 】
3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有【 】
某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要, 软件至少买3片,磁盘至少买2盒,则不同的选购方式共有【 】
圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.
某赛季足球比赛的计分规则是:胜一场,的3分;平一场,得1分;负一场,得0分.一球对打完15场,积33分.若不考虑顺序,该队胜、负、平的情况共有【 】
等比数列{an}的首项a1=-1,前n项和为Sn,若S10/S5 =31/32,则Sn 等于【 】
已知数列{an },{bn }都是由正数组成的等比数列,公比分别为p,q,其中p>q且p≠1,q≠1,设cn= an+bn,Sn为数列{cn}的前n项和.求Sn/Sn-1 .
在等比数列{an}中,a1>1,且前n项和Sn满足Sn=1/a1 ,那么a1的取值范围是【 】
已知等差数列前三项为a,4,3a前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值,(Ⅱ)求 (1/S1 +1/S2 +⋯+1/Sn ).
求极限[1/(n2+1)+2/(n2+1)+3/(n2+1)+⋯2n/(n2+1)].
已知等比数列{an}的公比q>1,并且a1=b(b≠0),求(a1+a2+a3+⋯+an)/(a6+a7+a8+⋯+an ).
已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,且Sn=a1+a2+⋯+an,那么Sn 的值等于【 】
已知数列{an}满足a1=1,an+1=an-1/3 an2 (n∈N* ),则【 】
已知等差数列{an}的公差不为零,Sn为其前n项和,若S5=0,则Si (i=0,1,2,…,100)中不同的数值有________个。
已知数列{an}满足an+1=1/4 (an-6)³+6(n=1,2,3,⋯),则【 】
数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】