已知Q:a1,a2,⋯,ak为有穷整数数列.给定正整数m,若对任意的n∈{1,2,⋯,m},在Q中存在ai,ai+1,ai+2,⋯,ai+j (j≥0),使得ai+ai+1+ai+2+⋯+ai+j=n,则称Q为m-连续可表数列.
(1)判断Q:2,1,4是否为5-连续可表数列?是否为6-连续可表数列?说明理由;
(2)若Q:a1,a2,⋯,ak为8-连续可表数列,求证:k的最小值为4;
(3)若Q:a1,a2,⋯,ak为20-连续可表数列,且a1+a2+⋯+ak<20,求证:k≥7.
已知Q:a1,a2,⋯,ak为有穷整数数列.给定正整数m,若对任意的n∈{1,2,⋯,m},在Q中存在ai,ai+1,ai+2,⋯,ai+j (j≥0),使得ai+ai+1+ai+2+⋯+ai+j=n,则称Q为m-连续可表数列.
(1)判断Q:2,1,4是否为5-连续可表数列?是否为6-连续可表数列?说明理由;
(2)若Q:a1,a2,⋯,ak为8-连续可表数列,求证:k的最小值为4;
(3)若Q:a1,a2,⋯,ak为20-连续可表数列,且a1+a2+⋯+ak<20,求证:k≥7.
(1)a2=1,a1=2,a1+a2=3,a3=4,a2+a3=5,所以Q是5-连续可表数列;易知,不存在i,j使得a_i+ai+1+⋯+ai+j=6,所以Q不是6-连续可表数列.(2)若k≤3,设为Q:a,b,c,则至多a+b,b+c,a+b+c,a,b,c,6个数字,没有8个,矛盾;当k=4时,数列Q:1,4,1,2,满足a1=1,a4=2,a3+a4=3,a2=4,a1+a2=5,a1+a2+a3=6,a2+a3+a4=7,a1+a2+a3+a4=8, ∴kmin=4.(3)Q:a1,a2,⋯,ak,若i=j最多有k种,若i≠j,最多有Ck^2种,所以最多有k+Ck^2=k(k+1)/2种,若k≤5,则a1,a2,…,ak至多可表5(5+1)/2=15个数,矛盾,从而若k<7,则k=6,a,b,c,d,e,f至多可表(6(6+1))/2=21个数,而a+b+c+d+e+f<20,所以其中有负的,从而a,b,c,d,e,f可表1~20及那个负数(恰 21个),这表明a~f中仅一个负的...
查看完整答案已知数列{cn},其中cn=2n+3n,且数列{cn+1 - pcn}为等比数列,求常数p.
设{cn},{bn}是公比不相等的两个比数列,cn =an+bn.证明数列{cn}不是等比数列.
记Sn为等比数列{an}的前n项和,若S2=4,S4=6,则S6=【 】
已知{an}为无穷等比数列,a1=3,an的各项和为9,bn=a2n,则数列{bn}的各项和为__________.
已知a,a∈R,ab>0,函数f(x)=ax2+bx(x∈R).若f(s-t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是【 】
已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】
已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】
已知数列{an}满足an+1=1/4 (an-6)³+6(n=1,2,3,⋯),则【 】
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】
设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.
将数列 {2n − 1} 与 {3n − 2} 的公共项从小到大排列得到数列 {an}, 则 {an} 的前 n 项和为 __________.