计算题(1988年全国统考

已知等比数列{an}的公比q>1,并且a1=b(b≠0),求⁡(a1+a2+a3+⋯+an)/(a6+a7+a8+⋯+an ).

答案解析

原式====(0-1)/(0-1)=1.

讨论

已知{an}是公差为2的等差数列,其前8项的和为64,{bn}是公比大于0的等比数列,b1=4,b3-b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1/bn ,n∈N*(i)证明{cn2-c2n}是等比数列;(ii)证明<2√2.

嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{bn}:b1=1+ ,b2=1+,b3=1+,…,依此类推,其中αk∈N* (k=1,2,⋯).则【 】

己知数列{an}各项均为正数,其前n项和Sn满足an⋅Sn=9(n=1,2,⋯).给出下列四个结论:①{an}的第2项小于3; ②{an}为等比数列;③{an}为递减数列; ④{an}中存在小于1/100的项.其中所有正确结论的序号是__________.

已知Q:a1,a2,⋯,ak为有穷整数数列.给定正整数m,若对任意的n∈{1,2,⋯,m},在Q中存在ai,ai+1,ai+2,⋯,ai+j (j≥0),使得ai+ai+1+ai+2+⋯+ai+j=n,则称Q为m-连续可表数列.(1)判断Q:2,1,4是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若Q:a1,a2,⋯,ak为8-连续可表数列,求证:k的最小值为4;(3)若Q:a1,a2,⋯,ak为20-连续可表数列,且a1+a2+⋯+ak<20,求证:k≥7.

已知数列{an}满足a1=1,an+1=an-1/3 an2 (n∈N* ),则【 】

数列{an}中,a1=1,a2=3,若地任意n(n≥2)都存在正整数i(1≤i≤n-1)使得an+1=2an-ai.(1)求a4的所有可能值.(2)命题p:若a1,a2,a3,…,a8成等差数列,则a9<30,证明命题p为真;写出p的逆命题q,并判断q的真假,若命题q为真则证明,若命题q为假,请举出反例.(3)若对任意正整数m,a2m=3m,求数列{an}的通项公式.

数列{an },{bn}满足(3ak+5)=55,(ak+bk)=32,求bk 的值.

有相交之二直线 a 及 b,自 a 上之一点作 b 之垂线,复自其在 b 上之垂足向 a作垂线,更自第二个垂足作 b 之垂线,如此继续作成无数根垂线,设第一垂线之长为 7,第二垂线之长为 6,求此无数垂线长之和.

设a,b,c三数成调和级数,试证1/a+1/c+1/(a-b)+1/(c-b)=0.

问级数1-x/√1+x²/√2-x³/√3+⋯何时收敛?