问答题(2021年天津市

已知{an}是公差为2的等差数列,其前8项的和为64,{bn}是公比大于0的等比数列,b1=4,b3-b2=48.

(1)求{an}和{bn}的通项公式;

(2)记cn=b2n+1/bn ,n∈N*

(i)证明{cn2-c2n}是等比数列;

(ii)证明<2√2.

答案解析

(1)设{an}的公差为d,前n项和为Sn,{bn}的公比为q(q>0).由题意得d=2,S8=8a1+(8×(8-1))/2×d=8a1+56=64,解得a1=1.∴an=a1+d(n-1)=1+2(n-1)=2n-1,n∈N*.根据题意,b1=4,b_3-b2=b1 q2-b1 q=4q2-4q=48,化简得q2-q-12=0,解得q=4或q=-3(舍去),∴bn=b1 qn-1=4n,n∈N*.∴{an}的通项公式为an=2n-1,n∈N*;{bn}的通项公式为bn=4n,n∈N*.(2)由(1)得cn=b2n+1/bn =42n+1/4n ,n∈N*,(i) cn2-c2n=(42n+1/4n )2-(44n+1/42n )=44n+2∙4n+1/42n -44n-1/42n =2∙4n,n∈N...

查看完整答案

讨论

设等比数列 {an} 满足 a1 + a2 = 4, a3 − a1 = 8.(1) 求 {an} 的通项公式;(2) 记 Sn 为数列 {log3an} 的前 n 项和. 若 Sm + Sm+1 = Sm+3, 求 m.

已知公比大于 1 的等比数列 {an} 满足 a2 + a4 = 20, a3 = 8.(1) 求 {an} 的通项公式;(2) 记 bm 为 {an} 在区间 (0, m] (m ∈ N∗) 中的项的个数, 求数列 {bm} 的前 100 项和 S100.

已知 {an} 是无穷数列. 给出两个性质:① 对于 {an} 中任意两项 ai, aj (i > j), 在 {an} 中都存在一项 am, 使得 =am;② 对于 {an} 中任意一项 an (n ⩾ 3), 在 {an} 中都存在两项 ak, al (k > l), 使得 an = .(I) 若 an = n (n = 1, 2, …), 判断数列 {an} 是否满足性质 ①, 说明理由;(II) 若 an = 2n−1 (n = 1, 2, · · · ), 判断数列 {an} 是否同时满足性质 ① 和性质 ②, 说明理由;(III) 若 {an} 是递增数列, 且同时满足性质 ① 和性质 ②, 证明: {an} 为等比数列.

在等差数列{an}中,若a10=0,则有等式a1+a2+⋯+an=a1+a2+⋯+a19-n (n<19,n∈N)成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式____________成立.

设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=________.

设数列{an}是公比q>0的等比数列,Sn是它的前n项和,若Sn=7,则此数列的首项a1的取值范围是________.

已知{an}为无穷等比数列,a1=3,an的各项和为9,bn=a2n,则数列{bn}的各项和为__________.

以三角形各边为直径作圆,试证任意两边上二圆公切线之长为第三边被内切圆切点所分两部分之比例中项.

记Sn为等比数列{an}的前n项和,若S4=-5,S6=21S2,则S8=【 】

我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物林质量的“环权”,已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{an},该数列的前3项成等差数列,后7项成等比数列,且a1=1,a5=12,a9=192,则a7=______;数列{an}所有项的和为________.

某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm, 10dm×6dm,24dm×3dm,三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么 Sk=________dm2.

已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.

数列{an}是递增的整数数列,且a1≥3,a1+a2+⋯+an=100,则n的最大值为【 】

定义Rp数列{an}:对p∈R满足:①a1+p≥0,a2+p=0;②∀n∈N*,a4n-1<a4n;③∀m,n∈N*,am+n∈{am+an+p,am+an+p+1}.(1)对前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{an}是R0数列 ,求a5的值;(3)是否存在p∈R,使得存在Rp数列{an},对∀n∈N*满足Sn≥S10?若存在,求出所有这样的p;若不存在,说明理由.

已知ai∈N* (i=1,2,…,9)对任意的k∈N* (2≤k≤8),ak=ak-1+1或ak=ak+1-1中有且仅有一个成立,a1=6,a9=9,则a1+⋯+a9的最小值为__________.

数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.

数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】

0−1 周期序列在通信技术中有着重要应用. 序列 a1a2 · · · an · · · 满足 a1 ∈ {0, 1} (i = 1, 2, · · · ), 且存在正整 数 m, 使得 ai+m = ai (i = 1, 2, · · · ) 成立, 则称其为 0−1 周期数列, 并称满足 ai+m = ai (i = 1, 2, · · · ) 的最小正整数 m 为这个序列的周期. 对于周期为 m 的 0−1 序列 a1a2 · · · an · · · , C(k) =(k = 1, 2, · · · , m−1)是描述其性质的重要指标. 下列周期为 5 的 0 − 1 序列中, 满足 C(k) ⩽ 1/5(k = 1, 2, 3, 4) 的序列是【 】

如图, 将钢琴上的 12 个键依次记为 a1, a2, · · · , a12, 设 1 ⩽ i ⩽ j ⩽ k ⩽ 12. 若 k − j = 3 且 j − i = 4, 则称 ai, aj, ak 为原位大三和弦; 若 k − j = 4 且 j − i = 3, 则称 ai, aj, ak 为原位小三和弦. 用这 12 个键可以构成的原 位大三和弦与原位小三和弦的个数之和为【 】

设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.