填空题(2000年上海市

在等差数列{an}中,若a10=0,则有等式a1+a2+⋯+an=a1+a2+⋯+a19-n (n<19,n∈N)成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式____________成立.

答案解析

b1b2…bn=b1b2…b17-n (n<17,n∈N)

讨论

等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为【 】

已知数列{bn }是等列数差,b1=1,b1+b2+⋯+b10=145.(Ⅰ)求数列{bn }的通项bn;(Ⅱ)设数列{an }的通项an=loga⁡(1+1/bn )(其中a>0,且a≠1,记Sn是数列{an }的前n项和.试比较Sn与1/3 logabn+1的大小,并证明你的结论.

记Sn为数列{an }的前n项和,已知a1=1,{Sn/an }是公差为1/3的等差数列.(1)求{an}的通项公式;(2)证明:1/a1 +1/a2 +⋯+1/an <2.

记Sn为等差数列{an}的前n项和.若2S3=3S2+6,则公差d=__________.

已知等差数列{an}的首项a1=-1,公差d>1.记{an}的前n项和为Sn(n∈N* ).(1)若S4-2a2 a3+6=0,求Sn;(2)若对于每个n∈N*,存在实数cn,使an+cn,an+1+4cn,an+2+15cn成等比数列,求d的取值范围.

设l1,l2,⋯,l100是公差为d1的等差数列的前100项,w1,w2,⋯,w100是公差为d2的等差数列的前100项,且d1 d2=10.设Ai表示边长分别为li和wi的矩形的面积,若A51-A50=1000,则A100-A90的值为__________.

我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.

设 {an} 是公差为 d 的等差数列, {bn} 是公比为 q 的等比数列. 已知 {an + bn} 的前 n 项和为 Sn = n2 − n + 2n − 1 (n ∈ N∗), 则 d + q 的值是______.

记Sn为数列{an }的前n项和.已知2Sn/n+n=2an+1.(1)证明:{an }是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.

已知等差数列{an}的公差不为零,Sn为其前n项和,若S5=0,则Si (i=0,1,2,…,100)中不同的数值有________个。

以三角形各边为直径作圆,试证任意两边上二圆公切线之长为第三边被内切圆切点所分两部分之比例中项.

记Sn为等比数列{an}的前n项和,若S4=-5,S6=21S2,则S8=【 】

我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物林质量的“环权”,已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{an},该数列的前3项成等差数列,后7项成等比数列,且a1=1,a5=12,a9=192,则a7=______;数列{an}所有项的和为________.

设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.

设 {an} 是等比数列, 且 a1 + a2 + a3 = 1, a2 + a3 + a4 = 2, 则 a6 + a7 + a8 =【 】

已知数列{an}的首项a1=b(b≠0),它的前n项的和Sn=a1+a2+⋯+an (n≥1),并且S1,S2,⋯,Sn,⋯是一个等比数列,其公比为p(p≠0,且|p|<1).(Ⅰ) 证明:a2,a3,⋯,an,⋯(即{an}从第2项起)是一个等比数列.(Ⅱ) 设Wn=a1 S1+a2 S2+⋯+an Sn (n≥1),求Wn(用b,p表示).

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(Ⅰ)证明:{an - 1} 是等比数列;(Ⅱ)求数列{Sn}的通项公式。请指出n为何值时,Sn取得最小值,并说明理由.

已知 {an} 是等比数列,且an > 0,a2a4 + 2a3a5 + a4a6 = 25,那么a3 + a5的值等于【 】

设{an}是等差数列, a1=1,Sn是它的前n项和;{bn}是等比数列,其公比的绝对值小于1, Tn 是它的前n项和.如果a3=b2,S5=2T2-6,Tn =9,求{an },{bn}的通项公式.

设{an}是由正数组成的等比数列,Sn是其前n项和.(1)证明(lgSn+lgSn+2)/2<lgSn+1.(2)是否存在常数c>0,使得[lg(Sn-c)+lg⁡(Sn+2-c)]/2=lg(Sn+1-c)成立?并证明你的结论.