在等差数列{an}中,若a10=0,则有等式a1+a2+⋯+an=a1+a2+⋯+a19-n (n<19,n∈N)成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式____________成立.
在等差数列{an}中,若a10=0,则有等式a1+a2+⋯+an=a1+a2+⋯+a19-n (n<19,n∈N)成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式____________成立.
b1b2…bn=b1b2…b17-n (n<17,n∈N)
等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为【 】
记Sn为数列{an }的前n项和,已知a1=1,{Sn/an }是公差为1/3的等差数列.(1)求{an}的通项公式;(2)证明:1/a1 +1/a2 +⋯+1/an <2.
记Sn为等差数列{an}的前n项和.若2S3=3S2+6,则公差d=__________.
我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.
记Sn为数列{an }的前n项和.已知2Sn/n+n=2an+1.(1)证明:{an }是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.
已知等差数列{an}的公差不为零,Sn为其前n项和,若S5=0,则Si (i=0,1,2,…,100)中不同的数值有________个。
以三角形各边为直径作圆,试证任意两边上二圆公切线之长为第三边被内切圆切点所分两部分之比例中项.
记Sn为等比数列{an}的前n项和,若S4=-5,S6=21S2,则S8=【 】
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
设 {an} 是等比数列, 且 a1 + a2 + a3 = 1, a2 + a3 + a4 = 2, 则 a6 + a7 + a8 =【 】
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(Ⅰ)证明:{an - 1} 是等比数列;(Ⅱ)求数列{Sn}的通项公式。请指出n为何值时,Sn取得最小值,并说明理由.
已知 {an} 是等比数列,且an > 0,a2a4 + 2a3a5 + a4a6 = 25,那么a3 + a5的值等于【 】
设{an}是等差数列, a1=1,Sn是它的前n项和;{bn}是等比数列,其公比的绝对值小于1, Tn 是它的前n项和.如果a3=b2,S5=2T2-6,Tn =9,求{an },{bn}的通项公式.