填空题(2022年印度

设l1,l2,⋯,l100是公差为d1的等差数列的前100项,w1,w2,⋯,w100是公差为d2的等差数列的前100项,且d1 d2=10.设Ai表示边长分别为li和wi的矩形的面积,若A51-A50=1000,则A100-A90的值为__________.

答案解析

18900设l1=a,w1=b,则A51-A50=l51 w51-l50 w50=(a+50d1 )(b+50d2 )-(a+49d1)(b+49d2)=bd1+ad2+99d1 d2=1000⟹bd...

查看完整答案

讨论

在复数范围内,方程z ̅-z2=i(z ̅+z2)的解的个数为__________.

设z是虚部不为零的复数.若(2+3z+4z2)/(2-3z+4z2)是实数,则|z|2的值为__________.

在一项传染病研究中,收集了900位患者的样本,发现其中:190人有发热症状,220人有咳嗽症状,220人有呼吸困难症状,330人发热或咳嗽,350人咳嗽或呼吸困难,340人发热或呼吸困难,30人同时出现发热、咳嗽、呼吸困难的症状。从这900人中随机抽取一人,则至少出现一种症状的概率是__________.

设α为正实数,函数f:R→R和g:(α,+∞)→R分别定义为f(x)=sin⁡(πx/12)和g(x)=2ln⁡(√x-√α)/ln⁡(e√x-e√α),则f[g(x)]=__________.

计算3/2 cos-1+1/4 sin-1⁡(2√2π)/(2+π2 )+tan-1⁡(√2/π)的值为__________.

集合X={x|x是不大于10的正整数},求满足下列条件的函数f:X→X共有多少个。(1)对于任意不大于9的正整数x,有f(x)≤f(x+1)(2)当1≤x≤5时,f(x)≤x;当6≤x≤10时,f(x)≥x(3)f(6)=f(5)+6.

有6张卡片,正面分别写有数字1~6,背面都写有数字0.起初将这些卡片正面朝上排成一排,且第k个位置上的卡片恰写有数字k.下面利用这6张卡片和一枚均匀的骰子进行如下实验:掷出骰子,若点数为k,则将第k个位置上的卡片翻面,放在原处。进行上述实验3次,若卡片朝上的数字之和为偶数,在这一条件下,骰子恰有一次点数为1的概率为q/p.求p+q的值(p,q为互质整数)

连续型随机变量X的取值范围为0≤X≤a,X的概率密度函数图像如下所示: 若P(X≤b)-P(X≥b)=1/4,P(x≤√5)=1/2,则a+b+c的值为【 】

某公司生产的洗发水,每瓶容量服从N(m,σ²)的正态分布。随机抽取16瓶,用样本均值推断m的95%置信区间为746.1≤m≤755.9.若随机抽取n瓶,用样本均值推断m的99%置信区间为a≤m≤6.已知P{|Z|≤1.96}=0.95,P{|Z|≤2.58)=0.99,要使b-a不大于6,n最小为【 】

袋中装有1个写有数字1的白球、1个写有数字2的白球、1个写有数字1的黑球和3个写有数字2的黑球。一次性从袋中随机取出3个球,记“取出的是1个白球、2个黑球”为事件A,“3个球上数字的乘积为8”为事件B,则P(A∪B)为【 】

已知数列{bn }是等列数差,b1=1,b1+b2+⋯+b10=145.(Ⅰ)求数列{bn }的通项bn;(Ⅱ)设数列{an }的通项an=loga⁡(1+1/bn )(其中a>0,且a≠1,记Sn是数列{an }的前n项和.试比较Sn与1/3 logabn+1的大小,并证明你的结论.

设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是【 】

若Sn是数列{an }的前n项和.且Sn=n2,则{an }是【 】

已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列;②数列{}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.

记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2/Sn +1/bn =2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式.

设{an}是首项为1的等比数列,数列{bn}满足bn=nan/3.已知a1,3a2,9a3成等差数列.(1)求{an}和{bn}的通项公式;(2)记Sn和Tn分别为{an}和{bn}的前和n项和.证明:Tn<Sn/2.

已知{an}和{bn}是两个等差数列,且ak/bk (1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为【 】

在2和30中间插入两个正数,这两个正数插入后使前三个数成等比数列,后三个数成等差数列,求插入的两个正数?

记Sn为数列{an }的前n项和,已知a1=1,{Sn/an }是公差为1/3的等差数列.(1)求{an}的通项公式;(2)证明:1/a1 +1/a2 +⋯+1/an <2.

中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图, DD1,CC1,BB1,AA1是举, OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为DD1/OD1 =0.5,CC1/DC1 =k1,BB1/CB1 =k2,AA1/BA1 =k3,若k1,k2,k3是公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=【 】

已知数列{an}满足an+1=1/4 (an-6)³+6(n=1,2,3,⋯),则【 】

数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.

数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】

0−1 周期序列在通信技术中有着重要应用. 序列 a1a2 · · · an · · · 满足 a1 ∈ {0, 1} (i = 1, 2, · · · ), 且存在正整 数 m, 使得 ai+m = ai (i = 1, 2, · · · ) 成立, 则称其为 0−1 周期数列, 并称满足 ai+m = ai (i = 1, 2, · · · ) 的最小正整数 m 为这个序列的周期. 对于周期为 m 的 0−1 序列 a1a2 · · · an · · · , C(k) =(k = 1, 2, · · · , m−1)是描述其性质的重要指标. 下列周期为 5 的 0 − 1 序列中, 满足 C(k) ⩽ 1/5(k = 1, 2, 3, 4) 的序列是【 】

如图, 将钢琴上的 12 个键依次记为 a1, a2, · · · , a12, 设 1 ⩽ i ⩽ j ⩽ k ⩽ 12. 若 k − j = 3 且 j − i = 4, 则称 ai, aj, ak 为原位大三和弦; 若 k − j = 4 且 j − i = 3, 则称 ai, aj, ak 为原位小三和弦. 用这 12 个键可以构成的原 位大三和弦与原位小三和弦的个数之和为【 】

记 Sn 为等比数列 {an} 的前 n 项和. 若 a5 − a3 = 12, a6 − a4 = 24, 则 Sn/an=【 】

设等比数列 {an} 满足 a1 + a2 = 4, a3 − a1 = 8.(1) 求 {an} 的通项公式;(2) 记 Sn 为数列 {log3an} 的前 n 项和. 若 Sm + Sm+1 = Sm+3, 求 m.

设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.

信息熵是信息论中的一个重要概念. 设随机变量 X 所有可能的取值为 1, 2, … , n, 且 P (X = i) = pi >0 (i = 1, 2, …, n), =1, 定义 X 的信息熵 H(X) = −log2 pi.【 】

将数列 {2n − 1} 与 {3n − 2} 的公共项从小到大排列得到数列 {an}, 则 {an} 的前 n 项和为 __________.