问答题(2022年韩国

集合X={x|x是不大于10的正整数},求满足下列条件的函数f:X→X共有多少个。

(1)对于任意不大于9的正整数x,有f(x)≤f(x+1)

(2)当1≤x≤5时,f(x)≤x;当6≤x≤10时,f(x)≥x

(3)f(6)=f(5)+6.

答案解析

暂无答案

讨论

有6张卡片,正面分别写有数字1~6,背面都写有数字0.起初将这些卡片正面朝上排成一排,且第k个位置上的卡片恰写有数字k.下面利用这6张卡片和一枚均匀的骰子进行如下实验:掷出骰子,若点数为k,则将第k个位置上的卡片翻面,放在原处。进行上述实验3次,若卡片朝上的数字之和为偶数,在这一条件下,骰子恰有一次点数为1的概率为q/p.求p+q的值(p,q为互质整数)

连续型随机变量X的取值范围为0≤X≤a,X的概率密度函数图像如下所示: 若P(X≤b)-P(X≥b)=1/4,P(x≤√5)=1/2,则a+b+c的值为【 】

某公司生产的洗发水,每瓶容量服从N(m,σ²)的正态分布。随机抽取16瓶,用样本均值推断m的95%置信区间为746.1≤m≤755.9.若随机抽取n瓶,用样本均值推断m的99%置信区间为a≤m≤6.已知P{|Z|≤1.96}=0.95,P{|Z|≤2.58)=0.99,要使b-a不大于6,n最小为【 】

袋中装有1个写有数字1的白球、1个写有数字2的白球、1个写有数字1的黑球和3个写有数字2的黑球。一次性从袋中随机取出3个球,记“取出的是1个白球、2个黑球”为事件A,“3个球上数字的乘积为8”为事件B,则P(A∪B)为【 】

盒子中装有5个白色口罩和9个黑色口罩.一次性从盒中随机抽取3个口罩,至少有一个白色口罩的概率是【 】

从数字1,2,3,4,5可重复地选出4个,能排列成多少个大于4000的奇数【 】

在(x3+3)5的展开式中,x9项的系数为【 】

最高次项系数为1的三次函数f(x)和实数集上的连续函数g(x)满足下列条件,求f(4).(1)对于任意实数x,f(x)=f(1)+(x-1) f' [g(x)],(2)函数g(x)的最小值为5/2,(3) f(0)=-3,f[g(1)]=6.

对于正整数n,函数f(x)定义如下:f(x)=对于实数t,记方程f(x)=t的不同实数解的数量为g(t),求使得函数g(t)的最大值为4的所有正整数n的和.

点P在直线上运动,t(t≥0)时刻的速度v(t)和加速度a(t)满足以下条件:(1)当0≤t≤2时,v(t)=2t3-8t.(2)当t≥2时,a(t)=6t+4.求点P从t=0到t=3时刻移动的距离.

设O为正方形 ABCD 的中心, 在 O,A,B,C,D 中任取 3 点, 则取到的 3 点共线的概率为【 】

在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于7/4的概率为【 】

在区间(0,1/2]随机取1个数,则取到的数小于1/3的概率为【 】

袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回一个白球,则第4次恰好取完所有红球的概率为________.

为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段 价格变化第1天到第20天 - + + 0 - - - + + 0 + 0 - - + - + 0 0 +第21天到第40天 0 + + 0 - - - + + 0 + 0 + - - - + 0 - +用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概;(3)假设该农产品每天的价格变化只受前一天价格变化的影响,判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大(结论不要求证明).

甲乙两人投篮, 每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮. 无论之前投篮情况如何, 甲每次投篮的命中率均为 0.6,乙每次投篮的命中率均为0.8,由抽签决定第一次投篮的人选,第一次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量X_i服从两点分布,且P(Xi=1)=1-P(Xi=0)=qi,i=1,2,⋯,n,则E(Xi )=qi ,记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).

在矩形ABCD中,AD=2AB,E,F分别为AD,BC的中点,从A、B、C、D、E、F中任选三个点,则这三个点为顶点可组成的直角三角形的概率【 】

在一项传染病研究中,收集了900位患者的样本,发现其中:190人有发热症状,220人有咳嗽症状,220人有呼吸困难症状,330人发热或咳嗽,350人咳嗽或呼吸困难,340人发热或呼吸困难,30人同时出现发热、咳嗽、呼吸困难的症状。从这900人中随机抽取一人,则至少出现一种症状的概率是__________.

甲能解某题之几率为b/a,乙能解某题之几率为d/c,设甲与乙独自解之,试用两种方法,求某题能解之几率.

甲有两张牌a,b,乙有x,y,甲乙各任取一张牌,则甲取出牌不小于乙取出牌的概率不小于1/2.【 】(1)a > x.(2)a+b>x+y·

有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则【 】

某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由。

将3个1和2个0随机排成一行,则2个0不相邻的概率为【 】

已知花博会有四个不同的场馆A、B、C、D,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为__________.

甲、乙两人在毎次猜谜语活动中各猜—个谜语,若一方猜对且另一方猜错,则猜对一方获胜,否则本次平局。已知每次活动中,甲乙猜对的概率分别为5/6和3/5,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为__________;3次活动中,甲至少获胜2次的概率为__________.

从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为【 】

从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为【 】

从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.

甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表: 准点班次数 未准点班次数A 240 20B 210 30(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:K2=n(ad-bc)2/((a+b)(c+d)(a+c)(b+d)),P(K2⩾k) 0.100 0.050 0.010k 2.706 3.841 6.635

某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜 概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则【 】