在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于7/4的概率为【 】
A、7/9
B、23/32
C、9/32
D、2/9
把函数y=f(x)图像上所有点的横坐标缩短到原来的1/2倍,纵坐标不变,再把所得曲线向右平移π/3个单位长度,得到函数sin(x-π/4)的图像,则f(x)=【 】
将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有【 】
在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为【 】
设函数f(x)=(1-x)/(1+x),则下列函数中为奇函数的是【 】
已知命题p:∃x∈R,sinx<1,命题q:∀x∈R,e|x| ≥1,则下列命题中为真命题的是【 】
已知集合S={s│s=2n+1,n∈Ζ},T={t|t=4n+1,n∈Ζ},则S∩T=【 】
设2(z+z ̅)+3(z - z ̅)=4+6i,则z=【 】
设函数f(x)=a2x2+ax-3lnx+1,其中a>0.(1)讨论f(x)的单调性;(2)若y=f(x)的图像与x轴没有公共点,求a的取值范围.
设O为正方形 ABCD 的中心, 在 O,A,B,C,D 中任取 3 点, 则取到的 3 点共线的概率为【 】
在矩形ABCD中,AD=2AB,E,F分别为AD,BC的中点,从A、B、C、D、E、F中任选三个点,则这三个点为顶点可组成的直角三角形的概率【 】
盒子中装有5个白色口罩和9个黑色口罩.一次性从盒中随机抽取3个口罩,至少有一个白色口罩的概率是【 】
在区间(0,1/2]随机取1个数,则取到的数小于1/3的概率为【 】
袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回一个白球,则第4次恰好取完所有红球的概率为________.
甲有两张牌a,b,乙有x,y,甲乙各任取一张牌,则甲取出牌不小于乙取出牌的概率不小于1/2.【 】(1)a > x.(2)a+b>x+y·