单项选择(2020年新高考Ⅱ·理2020年新高考Ⅱ·文

在新冠肺炎疫情防控期间, 某超市开通网上销售业务, 每天能完成 1200 份订单的配货, 由于订单量大幅增 加, 导致订单积压, 为解决困难, 许多志愿者踊跃报名参加配货工作. 已知该超市某日积压 500 份订单未配货, 预计第二天新订单是 1600 份的概率为 0.05. 志愿者每人每天能完成 50 份订单的配货, 为使第二天积压订单及当日订 单配货的概率不小于 0.95, 则至少需要志愿者【 】

A、10 名

B、18 名

C、24 名

D、32 名

答案解析

B

讨论

若 α 为第四象限角, 则【 】

已知集合 U = {−2, −1, 0, 1, 2, 3}, A = {−1, 0, 1}, B = {1, 2}, 则 CU (A ∪ B) =【 】

已知函数 f(x) = ex − a(x + 2),(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 若 f(x) 有两个零点, 求 a 的取值范围.

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, △ABC 是底面的内接正三角形, P 为 DO 上一点, ∠APC = 90°.(1) 证明: 平面 PAB ⊥ 平面 PAC;(2) 设 DO = , 圆锥的侧面积为π, 求三棱锥 P − ABC 的体积.

△ABC 的内角为 A, B, C 的对边分别为 a, b, c, 已知 B = 150◦.(1) 若 a = c, b = 2, 求 △ABC 的面积;(2) 若 sin A + sin C =/2 , 求 C.

某厂接受了一项加工业务, 加工出来的产品 (单位: 件) 按标准分为 A, B, C, D 四个等级. 加工业务约定: 对于A 级品、 B 级品、 C 级品, 厂家每件分别收取加工费 90 元, 50 元, 20 元; 对于 D 级品, 厂家每件要赔偿原料损失费 50 元. 该厂有甲、乙两个分厂可承接加工业务. 甲分厂加工成本费为 25 元/件, 乙分厂加工成本费为 20 元/件.厂家为决定由哪个分厂承接加工业务, 在两个分厂各试加工了 100 件这种产品, 并统计了这些产品的等级, 整理如下:(1) 分别估计甲、乙两分厂加工出来的一件产品为 A 级品的概率;(2) 分别求甲、乙两分厂加工出来的 100 件产品的平均利润, 以平均利润为依据, 厂家应选哪个分厂承接加工业务?

数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.

曲线 y = lnx + x + 1 的一条切线的斜率为 2, 则该切线的方程为 ________________.

设向量 a = (1, −1), b = (m + 1, 2m − 4), 若 a ⊥ b, 则 m =______ .

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC = AC = OO1,则球 O 的表面积为【 】

甲、乙两人在毎次猜谜语活动中各猜—个谜语,若一方猜对且另一方猜错,则猜对一方获胜,否则本次平局。已知每次活动中,甲乙猜对的概率分别为5/6和3/5,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为__________;3次活动中,甲至少获胜2次的概率为__________.

为了检则学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检则,则每一类都被抽到的概率为________.

Six persons throw for a stake, which is to be won by the one who first throws head with a coin: if they throw in succession, find the chance of the fourth person.

有四个盒子,Ⅰ号盒子装有8个红球,3个蓝球,5个绿球;Ⅱ号盒子装有24个红球,9个蓝球,15 个绿球;Ⅲ号盒子装有1个蓝球,12个绿球,3个黄球;Ⅳ号盒子装有10个绿球,16个橙球,6个白球.首先从Ⅰ号盒子随机选择一个球,记为b。若b为红球,再从Ⅱ号盒子陆机选择一个球;若b为蓝球,则再从Ⅲ号子随机选择一个球;若b为绿球,则再从Ⅳ号盒子随机选择一个球。在“至少选择了一个绿球”的条件下事件“至少选择了一个白球”的条件概率为【 】

某生演题能解答三道,若考试时给予八题做出五道才能及格,问某生及格之机率为何?

甲、乙、丙三位同学进行羽毛球比赛, 约定赛制如下:累计负两场者被淘汰; 比赛前抽签决定首先比赛的两人, 另一人轮空; 每场比赛的胜者与轮空者进行下一场比赛, 负者下一场轮空, 直至有一人被淘汰; 当一人被淘汰后, 剩余的两人继续比赛, 直至其中一人被淘汰, 另一人最终获胜, 比赛结束.经抽签, 甲、乙首先比赛, 丙轮空. 设每场比赛双方获胜的概率都为 1/2.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.

如图,用A,B,C三类不同的元件连接成两个系统N1 N2.当元件A,B,C都正常工作时,系统N1正常工作; 当元件A正常工作且元件B,C至少有一个正常工作; 时,系统N2正常工作.已知元件A,B,C正常工作的概率依次为0.80,0.90,0.90分别求系统N1 N2正常工作的概率P1 P2.

某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜 概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则【 】

在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)

有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2和3.现任取出3面,它们的颜色与号码均不相同的概率是________.

设O为正方形 ABCD 的中心, 在 O,A,B,C,D 中任取 3 点, 则取到的 3 点共线的概率为【 】

甲乙两人投篮, 每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮. 无论之前投篮情况如何, 甲每次投篮的命中率均为 0.6,乙每次投篮的命中率均为0.8,由抽签决定第一次投篮的人选,第一次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量X_i服从两点分布,且P(Xi=1)=1-P(Xi=0)=qi,i=1,2,⋯,n,则E(Xi )=qi ,记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).

为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段 价格变化第1天到第20天 - + + 0 - - - + + 0 + 0 - - + - + 0 0 +第21天到第40天 0 + + 0 - - - + + 0 + 0 + - - - + 0 - +用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概;(3)假设该农产品每天的价格变化只受前一天价格变化的影响,判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大(结论不要求证明).

从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.

袋中装有1个写有数字1的白球、1个写有数字2的白球、1个写有数字1的黑球和3个写有数字2的黑球。一次性从袋中随机取出3个球,记“取出的是1个白球、2个黑球”为事件A,“3个球上数字的乘积为8”为事件B,则P(A∪B)为【 】

连续型随机变量X的取值范围为0≤X≤a,X的概率密度函数图像如下所示: 若P(X≤b)-P(X≥b)=1/4,P(x≤√5)=1/2,则a+b+c的值为【 】

有6张卡片,正面分别写有数字1~6,背面都写有数字0.起初将这些卡片正面朝上排成一排,且第k个位置上的卡片恰写有数字k.下面利用这6张卡片和一枚均匀的骰子进行如下实验:掷出骰子,若点数为k,则将第k个位置上的卡片翻面,放在原处。进行上述实验3次,若卡片朝上的数字之和为偶数,在这一条件下,骰子恰有一次点数为1的概率为q/p.求p+q的值(p,q为互质整数)

假设P1,P2两人进行比赛,每回合两人分别投掷一枚均匀的骰子,设x,y分别为P1,P2投出的点数,若x>y,记P1得5分,P2得0分;若x=y,记P1,P2均得2分;若x<y,记P1得0分,P2得5分.设Xi,Yi分别为第i回合后P1,P2的总得分.列Ⅰ 列Ⅱ(Ⅰ)P(X2≥Y2 )= (P) 3/8(Ⅱ)P(X2>Y2 )= (Q) 11/16(Ⅲ)P(X3=Y3 )= (R) 5/16(Ⅳ)P(X3>Y3 )= (S) 355/864 (T) 77/432正确的选项为【 】

在矩形ABCD中,AD=2AB,E,F分别为AD,BC的中点,从A、B、C、D、E、F中任选三个点,则这三个点为顶点可组成的直角三角形的概率【 】

掷骰一粒,连掷十次,求掷得四次六点之几率.